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Abstract. This paper presents a new application for analyzing electroencephalogram 
(EEG) signals. The signals are pre-filtered through MATLAB's EEGLAB tool. The 

created application performs a convolution between the original EEG signal and a 

complex Morlet wavelet. As a final result, the application shows the signal power value 

and a spectrogram of the convoluted signal. Moreover, the created application 

compares different EEG channels at the same time, in a fast and straightforward way, 

through a time and frequency analysis. Finally, the effectiveness of the created 

application was demonstrated by performing an analysis of the alpha signals of healthy 

subjects, one signal created by the subject with eyes closed and the other, with which 
it was compared, was created by the same subject with eyes open. This also served to 

demonstrate that the power of the alpha band of the closed-eyed signal is higher than 

the power of the open-eyed signal. 

Keywords: Application, Wavelet, Electroencephalogram, Signal, Analysis. 

Desarrollo de una aplicación de análisis de señales de EEG a través de una 

convolución de una ondícula Morlet compleja: resultados preliminares. 

Abstract. Este trabajo presenta una nueva aplicación para el análisis de señales de 
electroencefalograma (EEG). Las señales se prefiltran a través de la herramienta 

EEGLAB de MATLAB. La aplicación creada genera una convolución entre la señal 

original del EEG y una ondícula Morlet compleja. Como resultado final, la aplicación 

muestra el valor de potencia de la señal y un espectrograma de la señal medida. 

Además, la aplicación creada compara diferentes canales de EEG al mismo tiempo, 

de forma rápida y sencilla, a través de un análisis de tiempo y frecuencia. Finalmente, 

se demostró la efectividad de la aplicación creada al realizar un análisis de las señales 
alfa de sujetos sanos, una señal creada por el sujeto con los ojos cerrados y la otra, 

con la que se comparó, fue creada por el mismo sujeto con los ojos abiertos. Esto 

también sirvió para demostrar que la potencia de la banda alfa de la señal de ojos 

cerrados es mayor que la potencia de la señal de ojos abiertos. 

 

Palabras clave: Aplicación, Ondícula, Electroencefalograma, Señal, Análisis. 
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1 Introduction 

The analysis of EEG signals has become one of the most critical methods for obtaining 

information regarding abnormal conditions or diseases in humans, e.g., epilepsy (Adeli, 
Zhou, & Dadmehr, 2003), Alzheimer (Alberdi, Aztiria, & Basarab, 2016; Liu et al., 2017), 

and attention deficit hyperactivity disorder (Mann, Lubar, Zimmerman, Miller, & 

Muenchen, 1991), to name only some of them. This analysis has been achieved by 

obtaining the most essential neuronal information provided by brain dynamics, obtained 

through electrical signals produced by the brain (Omidvarnia et al., 2017). These 

signals have been classified into different frequency waves (delta, theta, alpha, beta, 

gamma) that when they present notable changes it is possible to define if the person 

presents some type of abnormal condition, for example, some people with Alzheimer's 
disease have had altered channel synchronization, loss of complexity, a slowing of 

frequency and synchrony or correlation between EEG signals of the different parts of 

the brain is reduced, which may be indicative of brain degeneration (Alberdi et al., 2016; 

Ieracitano, Mammone, Bramanti, Hussain, & Morabito, 2019). 

 

In order to study and classify the characteristics of EEG signals, different mathematical 

algorithms have been used such as fast Fourier transform (FFT), discrete wavelet 

transform, autoregressive (AR) model and entropy (Zhang, Liu, Ji, & Huang, 2016), 

multivariate multi-scale sample entropy, support vector machines (SVM), intrinsic mode 

functions (IMFs) (Bhattacharyya, Pachori, & Acharya, 2017), principal component 
analysis (Mann et al., 1991), mentioning some of them. Of all these methods, wave 

transforms was selected, because without discarding any of the aforementioned, wave 

transforms can provide high precision of the main characteristics of EEG signals in time 

and frequency (Adeli et al., 2003). Moreover, it allows an analysis within a specific 

frequency range; because of its properties, it can decompose the original signal in its 

different frequency sub-bands. This method was also selected because it is possible to 

create a spectrogram from the waveform and obtain information by visual inspection of 
the signal (Adeli et al., 2003). 

 

Within the literature analyzed to carry out this study, there has not been found an 
application similar to the one created, that performs an EEG signal analysis using a 

Morlet Wavelet Transform, in a fast and straightforward way, providing a visual 

(spectrogram) and numerical response. Little information was found in the literature 

about a quick and easy way, for analyzing and generating a spectrogram of an EEG 

signal. Therefore, in this paper, an application that develops an analysis by performing 

a convolution is presented (Fig. 1). The left command window has a button at the top 
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to upload a .mat file, also has a panel to insert the parameters of the wavelet within 
which are the number of cycles and an option to select the frequency band to analyze. 

In addition, the user is allowed to indicate the dataset number and the EEG channel 

number that will be analyzed. Finally, on the same left command window the button to 

start the analysis is found. The graphical spaces A1 and A2 show the spectrograms of 

the first channel, meanwhile spaces B1 and B2 show the spectrograms of the second 

channel. The comparison between both channels on the rank frequencies from 0 to 40 

Hz can be seen in the right side figures. The panels on the left (1) show the zoom of a 

frequency band from each panel on the right (2), respectively. 

 

The original signal and the complex Morlet wavelet are convoluted to generate the 
spectrogram of an EEG signal. Also, the created application calculates the power of 

each frequency band of the EEG signal to provide more accurate results.  

 

 

Figure 1. Main application interface created with MATLAB. The left command window 

has a button at the top to upload a file, a panel to insert the parameters of the wavelet 

and a button to start the analysis. The graphical spaces A1 and A2 show the 

spectrogram of the first channel. Spaces B1 and B2 show the spectrogram of the 

second channel. 
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2 Methods 

Signal pre-processing 

Because the program does not filter the data, the data must be previously filtered with 

the EEGLAB toolbox provided by MATLAB or another filter (Fig. 2). For this study, the 

power of the alpha band (8 - 14 Hz (Lobier, Palva, & Palva, 2017)) will be analyzed, 

therefore a high-pass filter at 0.5 Hz is useful and recommended to minimize slow drifts 

(X Cohen, 2014), and 40 as the edge of the low-pass filter can help to remove high-

frequency artifacts (X Cohen, 2014), it will also help to attenuate electrical line noise 
that occurs at 60 Hz in Mexico and 50 Hz in Europe produced by the power supply 

current. EEGLAB works with the created application, saving the most relevant 

information of the EEG signals that will be used to run the application. For example, the 

location of the electrodes must be saved with the number of each one, not just with the 

letter (e.g., Fz) in order that the application will know the number of the channel to 

analyze. 

 

Figure 2. A) the Fast Fourier Transform of the unfiltered Pz channel signal, B) EEG 

signal but after applying a 0.5 to 40 Hz filter. 

Algorithm 

This program performs a convolution between EEG signals and a Complex Morlet 

Wavelet (Fig. 3), an algorithm described in (X Cohen, 2014). 

 



B1-6 

 

 

Figure 3. Flowchart of the interchangeability of convolution in the time domain and 

frequency domain multiplication. The signals resulting from the processes shown within 

the blue box are the same, as are the signals resulting from the processes within the 

red box (X Cohen, 2014); using a shorter computation time the cycle on the right side 

of the flow chart. 

The convolution method was chosen together with a wavelet transform, since the FFT 

method does not allow to visualize an analysis based on the time domain, whereas with 

the wavelet cycles a decomposition of the data in the frequency domain, in the time 

domain or both, can be performed (Pattnaik, Dash, & Sabut, 2016; X Cohen, 2014). 

Due to the limitations that the wavelets present as a band-pass filter, it was necessary 

to use a complex Morlet wavelet described in (X Cohen, 2014), which is created by 

multiplying, point by point, a Gaussian window and a complex sine wave: 
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 (1) 

 

 with A  being a frequency band-specific scaling factor, e a constant called Euler's 

number, t is time, i is the imaginary operator (X Cohen, 2014), f is frequency (Hz) and 

s is the standard deviation of the Gaussian: 

 

 

(2) 

 

where n is the number of wavelet cycles. 

 

Also, this wavelet will serve to extract power information from the EEG data (X Cohen, 

2014). Furthermore, the result of convolution in the time domain can be represented by 
a multiplication between two vectors in the frequency domain. To achieve this, the FFT 

of the original signal and the CMW (kernel) is calculated separately. Finally, both 

resulting FFT signals are multiplied and the IFFT of the convoluted signal is calculated: 

 

 

(3) 

 

For this study, multiplication in the frequency domain was chosen because it reduces 

the computing time (X Cohen, 2014) of MATLAB. It is important to mention that the 
created application uses automatically the frames per epoch and the trials of each 

dataset to execute the convolution, so the result will be the same as the length of the 

kernel plus the length of the original signal minus one, as stated in (X Cohen, 2014). 
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After convolution, the real part of the final signal is introduced into a matrix, and a filled 
contour plot is created with the isolines of the final signal power values. In which it will 

be observed in the axis of the ordinate the range of the frequency bands, from 1 up to 

40 Hz; in the axis of the abscissa, it will be appreciated the time, that in this case are 

milliseconds. 

Database 

An EEG motor movement database (Schalk, Mcfarland, Hinterberger, Birbaumer, & 

Wolpaw, 2004) was used for evaluating the performance of the application. The used 

database consists of one hundred nine subjects performed different experiments, 

including opening and closing the fists of the hands, both physically and imaginatively, 

in order to distinguish these movements through the EEG signals (Goldberger et al., 
2000). These signals were taken from an EEG of 64 channels, placed on the scalp 

according to the 10-20 international system and, each signal was sampled at 160 

samples per second. The BCI2000 system was used to acquire the signals, developed 

and tested in (Schalk et al., 2004), which incorporates any brain signals, signal 

processing methods, output devices, and operating protocols. However, for this study, 

only the two baselines of the study were taken into account, which were created by the 

subject keeping eyes closed (without motor movement) for one minute and the other 
baseline keeping eyes open, for one minute as well.  

 

Moreover, at a later stage, different analyses will be performed taking into account the 
potentials evoked due to imaginary movements, as well as the analysis of other mental 

states, in order to validate the application and demonstrate that it can be used as part 

of a multimodal system in order to find unique biomarkers that serve for the early 

diagnosis of different diseases such as Alzheimer's, autism, tumours, etc (Alberdi et al., 

2016; Siuly & Zhang, 2016).  
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3 Results 

The created application compares different EEG channels at the same time, in a fast 

and straightforward way, through a time and frequency analysis. The baselines of the 
EEG database were selected with the idea of demonstrating that the alpha waves have 

a higher power when the subject has closed eyes than when the subject has open eyes, 

this following the established in different previous studies (Butler & Glass, 1974; Kan, 

Croarkin, Phang, & Lee, 2017; Morgan, Mcdonald, & Macdonald, 1971; Teplan, 2002; 

Valipour, Shaligram, & Kulkarni, 2013). Moreover, the PZ (51), CZ (11), FZ (34), and 

O2 (63) electrodes were selected, because they are commonly used since they have 

given significant results (Hussain et al., 2017; Rushby et al., 2016; Wyckoff, Sherlin, 

Ford, & Dalke, 2015) in terms of the power of the alpha band. Just to demonstrate the 
functionality of the application, 3 random subjects were taken into consideration to 

verify that the power of the alpha band is greater when moving the electrode from the 

front to the parietal lobe (Valipour et al., 2013). 

 

The created application asks the user to select the necessary characteristics for the 

analysis of EEG signals, i.e.: dataset number, channel number, number of wavelet 

cycles, the time range to be displayed on the plot (the application generates the analysis 

using the full-time range, not just the one selected by the user). Also, the colormap can 

be selected: Parula o Jet. Both colormaps have been proposed because colormaps in 

which their brightness function is linear, such as Parula (the default since MATLAB 
version R2014b), are still subject to usability problems (Helfman, 2015). However, the 

aim is for future researchers to be able to test both colormaps and have more reliable 

results. By the other hand, it is important to declare that the total number of wavelet 

frequencies used in the created application is 40, in a range from 0.5 to 40 Hz, since 

the frequencies of interest are within this range and the wave frequencies cannot be 

above the Nyquist frequency (half the sampling frequency) (X Cohen, 2014). The 

created application uses the sampling rate (Hz) of each dataset to select the center of 
the wavelets as a zero. 

 

Figure 4 shows the Pz (51) channel spectrograms after having performed an analysis 
using seven cycles for the wavelet and selecting a time from 0 to 1000 ms to display 

on the plot. Dataset number 1 was defined by the baseline with the eyes closed, while 

the number 2 was created while the eyes were kept open, both datasets belong to the 

test subject number 1. The color limits for these graphics are set by the range values 

of the frequency band selected by the user (see Figure 4). Therefore, the areas with 

the highest power within the same frequency band can be identified. 
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Figure 4. Analysis of channel Pz (51). Time range selected to display from 0 to 1000 

ms. Both spectrograms at the top belong to the dataset of subject 1 with closed eyes. 

The two spectrograms at the bottom belong to the dataset of subject 1 with open eyes. 

On the left, it can be seen the drop-down menu with the six frequency bands which are 

selectable for different analyses.  

Figure 5 shows the results of the Cz (11) channel analysis. For this analysis, the full-

time range of the signal (60000 ms) was selected to be displayed on the plot. It can be 

seen that the dataset with closed eyes has the power of the alpha band higher than 

that of open eyes. However, in the lower part of the section where the user specifies 

the characteristics for analysis, the application provides a result with the value of the 
power of the band that the user has previously selected, in this case, the values shown 

belong to the alpha band. 
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Figure 5. Analysis of channel Cz (11). Time range selected to display from 0 to 60000 
ms. Both spectrograms at the top belong to the dataset of subject 1 with closed eyes. 

The two spectrograms at the bottom belong to the dataset of subject 1 with open eyes. 

Figure 6 shows the spectrograms of channel Fz (34). Again it is observed that the 

dataset with closed eyes (1) has higher power than the dataset with open eyes (2). For 

this analysis, seven cycles were also used for the wavelet and the results from 20000 
to 40000 ms were shown. Also, the colormap jet was selected only as a demonstration 

object for the reader's knowledge. 

 

Figure 6. Analysis of channel Fz (34). Time range selected to display from 20000 to 

40000 ms. Both spectrograms at the top belong to the dataset of subject 1 with closed 

eyes. The two spectrograms at the bottom belong to the dataset of subject 1 with open 

eyes. 
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Figure 7 shows another of the capabilities of the created application, which is to 
compare four channels at the same time. In this case, the channels O2 (63), PZ (51), 

CZ (11), and FZ (34) were compared. It can be seen from each of the spectrograms 

that the power is more significant as we move closer to the electrodes at the back of 

the brain, following the conclusions stipulated in [14]. Also, to have a more precise 

response, the application created shows the total value of the power of the EEG band 

previously selected for each of the analyzed channels (uV). 

 

Figure 7. Analysis of O2 (top left), Pz (top right), Cz (bottom left), and Fz (bottom right) 

channels. Time range selected to display from 45000 to 60000 ms. Frequency range 

from 8 to 14 (alpha wave). 

The number of cycles of the wavelet can be changed and defined every time before the 
analysis performed by the application. Figure 8 presents an analysis performed on the 

O2 (63) channel, increasing the cycles for the wavelet to demonstrate the differences 

produced by these cycles in each analysis. In order to achieve better temporal precision 

using fewer cycles (e.g., 3), or if greater frequency precision is required more cycles 

can be selected (e.g., 10). Finally, an average analysis can be performed by selecting 

an intermediate number of cycles (e.g., 7).  
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Figure 8. Analysis of channel O2 (63). Time range selected to display from 20000 to 
30000 ms. Different numbers of wavelets cycles selected: 3 (top left), 7 (top right), 10 

(bottom left), and 13 (bottom right). 

Figure 9 shows how the created application can enlarge the spectrograms for more 

accurate analysis. Also, it is possible to observe each of the curves of the power bands 

created after convolution (Fig. 10), taking into account only the values provided by the 
band selected in the drop-down menu. Finally, if the user wishes to observe the original 

signal, the application allows this by selecting one of the last options from the bottom 

panel on the left side of the application (Fig. 11). 

 

A) 
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B) 

Figure 9. A) Maximization of the spectrogram of the frequency band selected (alpha) 

of the first channel. B) Maximization of the spectrogram of all frequencies of the first 

channel. 

 

 

Figure 10. Signal created after convolution, taking into account only the values present 

within the range of the frequency band selected by the user. 
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Figure 11. Original EEG signal from channel O2 (63). 

4 Conclusions 

A new application was described in this paper, which performs a convolution between 

the signals of an EEG and a complex Morlet wavelet, an algorithm described in (X 

Cohen, 2014). In addition, the application shows the spectrogram of each EEG signal 

and is able to calculate the power of each frequency band of the EEG signal. The 

created application allows the user to select the basic characteristics needed for an 

EEG signal analysis and to select the EEG channel number, in order to compare 

different EEG channels at the same time.  
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