
49

ELECTRÓNICA

Recibido 14 Sep 2017 ReCIBE, Año 6 No. 2, Noviembre 2017
Aceptado 5 Oct 2017

New S-box calculation approach for

Rijndael-AES based on an artificial neural

network

Nuevo enfoque para el calculo de la Caja-S para

Rijndael-AES basado en una red neuronal artificial

Jaime David Rios Arrañaga1

jaime.rios.1xyz@gmail.com

Janneth Alejandra Salamanca Chavarin1,

salecita_ale@hotmail.com

Juan José Raygoza Panduro1

juan.raygoza@cucei.udg.mx

Edwin Christian Becerra Alvarez1

edwincbecerra@gmail.com

1Centro Universitario de Ciencias Exactas e Ingenierías,

Universidad de Guadalajara, Jalisco, México.

mailto:jaime.rios.1xyz@gmail.com
mailto:salecita_ale@hotmail.com
mailto:juan.raygoza@cucei.udg.mx
mailto:edwincbecerra@gmail.com

50

Abstract: The S-box is a basic important component in symmetric key encryption,

used in block ciphers to confuse or hide the relationship between the plaintext

and the ciphertext. In this paper a way to develop the transformation of an input

of the S-box specified in AES encryption system through an artificial neural

network and the multiplicative inverse in Galois Field is presented. With this

implementation more security is achieved since the values of the S-box remain

hidden and the inverse table serves as a distractor since it would appear to be

the complete S-box. This is implemented on MATLAB and HSPICE using a network

of perceptron neurons with a hidden layer and null error.

Keywords: Artificial Neural Network, Cryptography, Circuits, SPICE.

Resumen: La Caja-S es un componente básico en el cifrado de clave simétrica,

usado en los cifradores por bloques para confundir o esconder la relación entre

el texto plano y el texto cifrado. Este trabajo presenta una manera de desarrollar

la transformación de los valores de entrada de la Caja-S especificada en el

sistema de cifrado AES por medio de una red neuronal y los valores del inverso

multiplicativo en el campo de Galois. Con esta implementación se logra mayor

seguridad debido a que los valores de la Caja-S permanecen ocultos mientras

que la tabla de los valores inversos en el dominio de Galois sirve de distractor

pareciendo ser la verdadera Caja-s. Este trabajo fue implementado en MATLAB

y HSPICE utilizando una red con neuronas del tipo Perceptron con una capa

oculta, obteniendo los valores esperados por la Caja-S original sin error.

Palabras clave: Circuitos, Criptografia, Red Neuronal Artificial, SPICE

51

1. Introduction

In cryptography, an S-box consists of a look up table with the corresponding 8-
bit word for each possible input in a non-linear transformation, in which the input
byte is considered the address of the table (Rodriguez-Henriquez, Saqib, Díaz &
Koc 2007). The S-box represents a bricklayer non-linear function that can be
decomposed in several boolean functions operating independently on a subset
of bits from the input vector (Daemen & Rijmen, 2002). If the functions are linear
they are called D-boxes.

The operation of an S-box is as follows: when a transformation is required for a
certain input, this input enters the S-box and points, or directs to the previously
calculated output of its transformation and then the input is replaced, as shown
in fig.1, where the value ai,j is substituted for the value bi,j as it passes through
the S-box.

Figure 1. Graphic representation of the use of an S-box

Due to their importance, S-boxes are chosen and designed to be resistant to
cryptanalysis, in literature several proposals with different characteristics are
found, some of them based on neural networks, like the framework for the design
of S-boxes used in ciphers based on neural networks by Noughabi (Noughabi &
Sadeghiyan, 2010) and “a new scheme for implementing s-box based on neural
network” by X. Zhang (Zhang, Chen, Chen, & Cao, 2015), others that optimize
existing boxes such as the high speed implementation of S. Oukili for the AES S-
box (Oukili, Bri & Kumar, 2016) and low-area S-box implementation of Thomson
(Thomson, Siva, & Priya, 2014); even new proposals such as the evolutionary
design of S-Box of M. Yang (Yang, Wang, Meng & Han, 2011) and the based on
chaotics maps of C. I. Rı̂ncu (Rı̂ncu & Iana, 2014).

This article presents a substitution of the S-box for another module that calculates
the AES S-box outputs with the use of a neural network and the multiplicative
inverse on Galois field 28 (GF (28)) of the input value to transform, or S-box input
value.

Section 2 introduces the AES algorithm giving a brief introduction to history and
a complete description of the Rijndael-AES algorithm, in this section under the
subsection “The Round Transformation” highlights the sub-Bytes function that

52

describe how the values of the S-box are calculated. Section 3 describes the
proposed method, this includes the neural network topology and the approach
for hardware implementation. The simulations are presented in section 4, this
section is an explanation of the implementation, behavior and results in MATLAB
and HSPICE. Finally conclusions are given in section 5.

2. AES, Advance Encryption Standard

Developed by Joan Daemen and Vincent Rijimen, Rijndael was finally chosen on
October 2000 by the National Institute of Standards and Technology (NIST)
among other encryption algorithms in an open process organized by the same
institute on January 1997 to become the new Advanced Encryption Standard
(AES) to replace Data Encryption Standard (DES) and triple-DES as encryption
standard (Daemen & Rijmen, 2002). Following NIST specifications, AES is a
symmetric block cipher algorithm with variable length of 128 bits, 192 bits and
256 bits, with a variable length key of 128 bits, 192 bits y 256 bits and easy on
hardware and software implementation (Daemen & Rijmen, 2002).

Although it is common to talk about AES and Rijndael indistinctly, being Rijndael
the selected algorithm for AES, there is a difference among them in the range of
values supported by the block length and key length to use. In Rijndael, the block
length and key length can be independently specified to any multiple of 32 bits,
with a minimum of 128 bits and a maximum of 256 bits. AES fixes the length
block and the length key to 128, 192 o 256 bits only (Daemen & Rijmen, 1999).

Independently of technical differences in the length of block and key permitted,
when talking about Rijndael or AES, we are talking about the same iterative block
cipher algorithm. Inputs and outputs of Rijndael-AES are considered to be one-
dimensional arrays of 8-bits. For encryption the input is a Plaintext block and a
cipher key, and the output is a ciphertext block. For decryption the inputs is a
ciphertext block and a cipher key, and the output is a Plaintext block (Daemen &
Rijmen, 2002).

The cipher can be divided in two parts with different functionality: the
transformation or encoding of the message, function called “The Round
transformation” and denoted as “Round” and “FinalRound”, this encryption
function is described in fig. 2 along with the functions that make it up, called steps;
and the transformation of the key called “Key schedule” given by the function
“KeyExpansion”.

53

Figure 2. Flowchart of the AES encryption algorithm

The different transformation operates on an intermediate result called State
which is represented as a rectangular array of bytes, with four rows and Nb
number of columns.

Similarly, the cipher key is represented as a rectangular array with four rows and
Nk number of columns (Daemen & Rijmen, 1999), (Rodriguez-Henriquez et al.,
2007), (Daemen & Rijmen, 2002), (Katz & Lindell, 2008), where

The number of rounds Nr depends on the values of Nb and Nk as presented in the
table 1.

54

Table 1. Number Of Rounds Nr As Function Of Nb And Nk

2.1. The Round Transformation

As shown in the fig. 2, the round transformation is divided in Round and
FinalRound. Round is formed by a sequence of four different and invertible
mathematical transformations on GF(28) which are called steps: 1) SubBytes, 2)
ShiftRows, 3) MixColumn, 4) AddRoundKey (Daemen & Rijmen, 1999),
(Rodriguez-Henriquez et al., 2007), (Daemen & Rijmen, 2002). The FinalRound
is similar to round but without the MixColumns function.

2.1.1. subBytes.

It is a non-linear transformation where each input byte of the state matrix is
replaced by another byte produced by the transformation. This Transformation is
defined in two steps (Daemen & Rijmen, 1999):

 Multiplicative inverse:

The input byte a is replaced by its multiplicative inverse x = a-¹ , with x = 0

for a = 0.

 Affine transformation:

Defined by y = M × x ⊕ b, where M is a constant matrix of 8 × 8 bits, x

represents the value to transform while b is a constant byte equal to 6316

(011000112) (Daemen & Rijmen, 2002).

The matrix representation of the transformation is shown in (3), where M is

replaced by the constant matrix of 8×8 bits, x is expanded to the polynomial

representation of a byte, starting with the most significant bit; and b the binary

constant.

55

Another way to implement this transformation is to use the corresponding S-Box

shown in fig. 3 replacing the input value (row, column) by the value that crosses

them.

Figure 3. AES S-box

The inverse operation, called InvSubBytes, consists of the use of the inverse S-

Box of fig. 4 for each byte of the state.

Figure 4. AES Inverse S-box

56

The inverse S-box is obtained by the applying the inverse of the affine

transformation, shown in ec. 3 followed by taking the multiplicative inverse in

GF(28). The inverse of (3) is represented in (4) (Daemen & Rijmen, 2002).

(4)

2.1.2. ShiftRows

In ShiftRows, the rows of the state are shifted cyclically to the left in different

proportions. Row 0 does not changes, but the remaining rows follow an offset of

C1 , C2 and C3 bytes respectively, this proportion depends only of the block length

Nb (Daemen & Rijmen, 2002). The inverse operation, called InvShiftRows,

consists in a cyclic shift of the three bottom rows over Nb − C1 , Nb − C2 y Nb − C3

bytes respectively. The table 2 shows the value of Cn per each possible Nb.

Table 2. Shifted Bytes In Shiftrows Per Block Lenght

2.1.3. MixColumns

The MixColumns step is a bricklayer permutation operating on the state column

by column. In Mixcolumns the state columns are considered as polynomials in

GF (28) and multiplied modulo x4 + 1 with the fixed polynomial c(x) given by c(x)

= (0316)x3 + (0116)x2 + (0116)x + 0216 . This operation can be written as a matrix

multiplication, let b(x) = c(x) a(x) mod x4 +1 as is show in (5).

The inverse of MixColumns is called InvMixColumns. It is similar to MixColumns.

57

The transformation is performed by multiplying each column by the polynomial

d(x) = (0B16)x3 + (0D16)x2 + (0916)x + 0E16, represented in (6) as a matrix

multiplication (Daemen & Rijmen, 1999), (Daemen & Rijmen, 2002), (Parikh &

Narkhede, 2016).

2.1.4. AddRoundKey

In this transformation the state is modified with the bitwise XOR operation with

the round key derived from the cipher key and the function Key Schedule. The

length of round key is equal to the block length Nb (Daemen & Rijmen, 1999).

The inverse of AddRoundKey is called InvAddRoundKey, and is applied in the

same way as AddRoundKey applying the keys in reverse order (Rodriguez-

Henriquez et al., 2007).

2.2. Key Schedule

Consists in the expansion of the key and in the key selection round (Daemen &
Rijmen, 2002). The key expansion specifies how the expanded key is calculated
from the cipher key. The number of bits in the expanded key is equal to the block
length multiplied by the number of rounds Nr plus one, generating a total of Nb ×
(Nr + 1) words, or Nr + 1 subkeys, one per each round (Bonadero, Liberatori, Bria
& Villagarcı́a, 2005).

The cipher key is expanded inside of the Expanded key. Round keys are taken
from Expanded key as follows: the first round key consists on the initial Nb words,
the second on the subsequent Nb words, and so on (Daemen & Rijmen, 1999).

2.2.1 KeyExpansion.

Expanded Key is a four byte linear array denoted by W [Nb × (Nr + 1)]. The first
Nk words contain the cipher key, while all other words are defined recursively.
KeyExpansion depends of the Nk value and is calculated as in fig. 5, employing
the functions subBytes, Rotbyte and Rcon (Daemen & Rijmen, 1999), (Daemen
& Rijmen, 2002).

RotByte returns a word that results from a cyclical permutation from the input
word, e.g., for an input {a,b,c,d} the output is {b,c,d,a}.

58

The constant Rcon is independent of N k and is defined in (7) as:

where RC[i] represents an element in GF (28) with value x(i-1) such that:

Figure 5. Flowchart diagram for KeyExpansion function

59

3. Proposed Method

The modification consists in substituting the AES S-box for an Artificial Neural
Network (ANN) that solves the transformation using as input the corresponding
multiplicative inverse value GF (28) of the original S-box input value. To obtain
the corresponding inverse a lookup table is used. The S-box is substituted for a
module formed by a table with the inverse values obtained from (Pelzl & Paar,
2010), (Srebrny, Kościelny & Kurkowski, 2013) and a neural network as is shown
in fig. 6. With this method two advantages are obtained, the first one is that the
values of the S-box are hidden, and the second one is that it’s possible to change
the values of the S-box just by a simply changing the weights.

Figure 6. a) S-box representation. b) Representation of the S-box proposed

The neural network topology was proposed by means of observation. The
transformation is performed bitwise, nevertheless another arrangement is also
acceptable. The neural network consists of eight subnetworks, one per bit, each
one as illustrated in fig. 7 is composed by seven perceptron neurons in three
layers: input layer, hidden layer and output layer. Based on neural networks that
perform AND and XOR behaviors each neuron has two inputs and a pulse
activation function given by (11).

Figure 7. Neural network with one bit output

60

The circuit implementation was developed in HSPICE which is an electric circuit
simulator (synopsys, 2003), (Piuri, 1991). In hardware implementation,
Operational Transconductance Amplifiers (OTA) are used as proposed in
(Kawaguchi, Umeno & Ishii, 2014), (Ghosh, LaCour & Jackson, 1994) in order
to manage current signals and simplify the sum of the synaptic weights.

The OTA is a voltage controlled current source (VCCS). Its main characteristics
are high input impedance and high output impedance (Barclay & Wood, 1994),
(Qing-Lin, Jian-You & Mei-Lun, 1991). The OTA macromodel is shown in fig. 8,
where Vin1 and Vin2 are the voltage inputs, the voltage difference of these sources
is reflected in nodes a and b.

Figure 8. Macromodel for the Operational Transconductance Amplifier

The output current Iout is proportional to the difference between these voltages as
in eqn. 12.

where gm is the transconductance gain, Vin1 the positive input voltage, Vin2 the
negative input voltage and Iout the output current.

The OTA is used to represent the neuron inputs, converting (in the input layer) or
keeping (in the remaining layers) the input signal into a current signal and using
the amplifiers gain (gm) as the corresponding synaptic weight. The signals are
summed by simply connecting the OTAs outputs to a wire line which is then the
input to the activation function.

61

4. Simulations

The proposed network was simulated in Matlab, where it was tested and the
expected operation for the S-box specified for AES was verified. An
implementation using OTAs in HSPICE was performed, where the gain is
equivalent to the corresponding weights. Simulating the electric behavior of the
system. In the next subsections details of its implementation and results are
given.

4.1. Simulation and Results in MATLAB

In the simulation the inverse value in GF(28) was used as input of the system and
the results were compared and verified with its corresponding S-box values. For
a better visualization of the results, the binary values were converted to decimal
and are presented in fig. 9 highlighting that the values obtained correspond to
those expected with an error of 0%.

Figure 9. Expected vs. obtained values. Inputs from 0 to 255

The synaptic weights used are shown in table 3, these values were obtained from
neural networks with AND and XOR behaviors, hence there was no previous
training of the network.

62

Table 3 Synaptic Weight Values

63

4.2. HSPICE Implementation and Results

According to the structure proposed in fig. 7 the architecture shown in fig. 10 is
implemented in HSPICE, where V1 through V8 represent the input signals, the
weight, W, are represented by the transconductance of the OTAs, the sums are
represented by linking the OTAs outputs, and finally the activation function
described in (11) is applied.

The structure in fig. 10 has one bit output, hence it’s necessary to replicate the
structure in order to have an eight bit output. It should be noted that it is not
necessary to replicate the voltage sources and their resistance, i.e. the inputs,
only the current source, their resistance and the activation functions.

Figure 10. S-box structure with 1 bit output

64

Circuit operation steps

1. The input value is placed in the voltage sources V1 through V8 for the S-

box value that wants to be obtained.

2. The voltage difference between nodes n11 and n12 is the voltage in source

V1. This difference is multiplied by the gain (weight). This is repeated in

voltage source V2 to V8.

3. Since the outputs from the OTAs are given in current, they can be summed

by joining them as follows:

OTA1 output and OTA2 output are linked in Irl1

OTA3 output and OTA4 output are linked in Irl2

OTA5 output and OTA6 output are linked in Irl3

OTA7 output and OTA8 output are linked in Irl4

4. Activation function (11) is applied in Af1 through Af4.

5. Af1 output is linked with Af2, and Af3 with Af4

6. Activation function is applied in Af5 and Af6

7. Af5 and Af6 outputs are linked

8. 8) Activation function is applied in Af7

9. 9) Af7 output corresponds to bit0

As mentioned previously, the structure is replicated to obtain the eight output bits,

therefore the same steps are repeated to obtain bit1 to bit7.

To verify the circuit operation, tests were performed with the input values shown

in table IV, the table displays some of the values found in the S-box and the result

to those inputs, the next two columns show the input value for the proposed

network which corresponds to the multiplicative inverse in GF(28) and the result

obtained from that input. The results obtained from the network are identical, thus

the operation of the network is validated.

In figs. 11 and 12 the results obtained from the circuit for four inputs of the table

are shown.

65

Figure 11. Obtained result for input 00 16 and 80 16 in GF (28)

Figure 12. Obtained result for input 34 16 and 11 16 in GF (28)

e.g. On the left side in fig. 11 the obtained result from the circuit to input 00 16 in

GF(28) is 6316 , the result is verified in table 4. Similarly on the left side the result

EC16 is obtained for an input 8016 in GF(28).

66

Table 4. Test Values For The Circuit Implemented In HSPICE

5. Conclusion

An implementation of an S-box using a neural network in MATLAB and HSPICE

is presented, this neural network is based on the operations used to obtain the

values of the S-box through 8 perceptron subnetworks and a lookup table with

the inverse in GF(28). Even if this method of calculating S-box values for AES

does not present an advantage reducing resources, since storing the inverse

values for each possible input represent hundred percent of the necessary

resources to store the original S-box, the values computed by a neural network

offers greater security by maintaining the transformation values hidden and using

a distractor or an apparently S-box that contains the inverse values in GF(28).

The simulation results show that the implementation presents a null error,

thereafter if the neural network were applied, it will not show changes in the

results expected within the encryption algorithm because it simulates without

error the operation of the S-box.

67

References

Barclay M. & Wood J., (1994) A SPICE macromodel for operational

transconductance amplifiers. IEE Colloquium on Analogue Signal Processing,

London, 1994, pp. 1/1-1/4.

Bonadero J., Liberatori M., Bria O. & Villagarcı ́a-Wanza H. (2005) Expanción de

la clave en rijndael: diseño y optimización en vhdl. In XI Workshop IBERSHIP.

Daemen J. & Rijmen V. (1999) AES proposal: Rijndael.

Daemen J. & Rijmen V. (2002) The design of Rijndael: AES - the Advanced

Encryption Standard. Springer-Verlag.

Ghosh J., LaCour P. & Jackson S. (1994) Ota based neural network architectures

with on-chip tuning of synapses. In Proceedings of 7th International Conference

on VLSI Design, pages 71–76.

Katz J. & Lindell Y. (2008) Introduction to Modern Cryptography. Chapman &

Hall/CRC cryptography and Network Security.

Kawaguchi M., Umeno M. & Ishii N. (2014) The two-stage analog neural network

model and hardware implementation. In 2014 IIAI 3rd International Conference

on Advanced Applied Informatics, pages 936–941.

Noughabi M. N. A. & Sadeghiyan B. (2010) Design of s-boxes based on neural

networks. In 2010 International Conference on Electronics and Information

Engineering, volume 2, pages V2–172–V2–178.

Oukili S., Bri S., & Kumar A. V. S. (2016) High speed efficient fpga implementation

of pipelined aes s-box. In 2016 4th IEEE International Colloquium on Information

Science and Technology (CiSt), pages 901–905.

Parikh P. & Narkhede S. (2016) High performance implementation of mixing of

column and inv mixing of column for aes on fpga. In 2016 International

Conference on Computation of Power, Energy Information and Commuincation

(ICCPEIC), pages 174–179.

Pelzl J. & Paar C.. (2010) Understanding Cryptography - A Textbook for Students

and Practitioners. Springer-Verlag Berlin Heidelberg, 1 edition.

Piuri V. (1991) The use of the electrical simulator spice for behavioral simulation

of artificial neural networks. In 1991 Proceedings of the 24th Annual Simulation

68

Symposium, pages 18–29.

Qing-Lin Sun, Jian-You Liu & Mei-Lun Liu, (1991) An improved nonlinear

macromodel of OTA, 1991 International Conference on Circuits and Systems,

Shenzhen, China. pp. 906-908 vol.2.

Rı̂ncu C. & Iana V. (2014) S-box design based on chaotic maps combination. In

2014 10th International Conference on Communications (COMM), pages 1–4.

Rodriguez-Henriquez F., Saqib N.A., Dı ́az A., & Koc CK. (2007) Cryptographic

Algorithms on Reconfigurable Hardware. US: Springer.

Srebrny M., Kościelny C. & Kurkowski M. (2013) Modern Cryptography Primer,

Theoretical Foundations and Practical Applications. Springer-Verlag Berlin

Heidelberg, 1 edition.

synopsys. (2003) HSPICE Simulation and Analysis User Guide.

Thomson K, Siva. N, & Priya S. (2014) Implementation of low-area s-box based on

normal basis. In 2014 International Conference on Electronics and

Communication Systems (ICECS), pages 1–4.

Yang M., Wang Z., Meng Q., & Han L. (2011) Evolutionary design of s-box with

cryptographic properties. In 2011 IEEE Ninth International Symposium on Parallel

and Distributed Processing with Applications Workshops, pages 12–15.

Zhang X., Chen F., Chen B., & Cao Z. (2015) A new scheme for implementing s-

box based on neural network. In 2015 International Conference on

Computational Science and Computational Intelligence (CSCI), pages 571–576.

69

Notas biográficas:

Jaime David Rios Arrañaga received the B. degree in Eng. in

communications and electronics in 2014, currently pursuing a

M.Sc. degree in electronics and computer science engineering

at the University of Guadalajara. His current research is on

cryptographic systems in reconfigurable hardware.

Janneth Alejandra Salamanca Chavarin received the B.

degree in Eng. In communications and electronics in 2014,

currently pursuing a M.Sc. degree in electronics and computer

science engineering at the University of Guadalajara. Her

current research interest is biological neural networks.

Juan José Raygoza Panduro Ph.D. in Computer Science and

Telecommunications from Autonomous University of Madrid,

Spain. He specializes in the design of digital architecture based

on FPGAs, Microprocessors, VLSI, embedded system and

bioelectronics, Neuroengineering. Research Professor at

University of Guadalajara.

Edwin C. Becerra Alvarez Ph.D. degree in Microelectronics

from University of Seville, Spain. His current research interests

are on integrated CMOS design, transceiver design and

embedded systems. Research Professor at CUCEI; University of

Guadalajara

Esta obra está bajo una licencia de Creative Commons
Reconocimiento-NoComercial-CompartirIgual 2.5 México.

http://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES

