
COMPUTACIÓN E INFORMÁTICA
ReCIBE, Año 2 No.1, Mayo 2013

Updating freeTribe to Support Efficient

Synchronous Awareness in the Web

Context

RicardoDelgadillo

University of Guadalajara (Mexico)

rdelgadi@cucsur.udg.mx

Eduardo Escofet

Gilogiq Internet Services Ltd.,17190Girona (Spain)

escofet@gilogiq.com

Humberto Rodríguez-Avila

Department of Informatics,

University of Holguín, 80100 Holguín(Cuba)

hrodriguez@acinf.uho.edu.cu

Julio C. Rodríguez-Cano

Department of Informatics,

University of Holguín, 80100 Holguín(Cuba)

jcrcano@acinf.uho.edu.cu

mailto:rdelgadi@cucsur.udg.mx
mailto:escofet@gilogiq.com
mailto:hrodriguez@cucsur.udg.mx
mailto:jcrcano@acinf.uho.edu.cu

Abstract: The research field of Computer-Supported Cooperative Work has

been reflected fundamentally in theoretical contributions. This contributions

have constitute the base to carry out several intents to facilitate the work of the

collaborative systems developers, however, current tool-kits, APIs or class

libraries only eliminate partially the gap between the technical aspects that

impose the information technology and the stressed social character of the

process of collaboration in the World Wide Web. In this paper is presented the

framework freeTribe, which involve the domain of the distributed groupwares

leaning on the Cooperative Model of the methodology AMENITIES, in the

middleware platform ICE and in RIA technologies; freeTribe has been designed

as a software framework, to maximize its reusability and adaptability with a

minimal programming effort. Support for synchronous group tasks in the Web

context is increasingly recognized as a desideratum for collaborative systems

and several tools have emerged recently that help groups of people with the

same goals to work together, but many issues for these collaborative systems

remain under studied. We identified synchronous awareness as one of these

issues in collaborative systems, and updated freeTribe with four well-accepted

kinds of awareness (group awareness, workspace awareness, contextual

awareness, and peripheral awareness) by the community focusing our interest

 in its synchronous mechanism for efficient interaction in Web contexts.

Keywords: computer-supported cooperative work, groupware, synchronous

 awareness.

1. Introduction and motivation

“Collaboration” seems to be the buzzword this year,

just like “knowledge management” was last year.

-David Coleman

Reading these first lines maybe you asked yourself, why to update freeTribe

with a Web-based infrastructure to support synchronous awareness? Why

now? There is a simple two-fold answer to both these questions. Using

technology to understand and support collaborative behavior has been around

for a while, what is well known as Computer-Supported Cooperative Work

(CSCW), but it is in the recent years that we have seen more specialized

attention given to applying CSCW methods and frameworks for explicit

collaborative scenarios in the World Wide Web. On the other hand, the Web-

based technologies for groupware development have found the importance of

Rich Internet Applications (RIA) frameworks in order to support real-time

interaction. This motivation has been getting pushed by the extended use of

Internet applications like Social Networks (e.g., Facebook, Twitter, Google+ and

LinkedIn) or Virtual Worlds (e.g., SecondLife, Wonderland and Qwaq) for

instance (Coleman & Levine, 2008).

Attending to this situation we saw that a set of theories and models for

understanding and providing awareness emerged in the early works reported in

the CSCW literature. Gaver (1991) argued that an intense sharing of

awareness characterizes focused collaboration in which people work closely

together on a shared goal. He further claimed that less awareness is needed for

division of labor, and that more casual awareness can head to serendipitous

communication, which can turn into collaboration. Some lines of research

focused on providing awareness using computational environments based on

“event propagation mechanisms” for collecting, disseminating, and integrating

information concerning collaborative activities in several groupwares that we

can find available today.

In the CSCW context, the term groupware refers to an application that helps

people work together collectively while located remotely (different place) or co-

located (same place) from each other, and interacting synchronously (same

time) or asynchronously (different time) (Ellis et al., 1991). One of the most

general definitions was coined by Wells and Kurien (1996) “Groupware is the

software and hardware for shared interactive environments”.

Our keystone to research around the groupwares and awareness is freeTribe

(FRamework for dEvElopment of disTRIButed groupware)(Hurtado-Matos &

Rodríguez-Cano, 2006), which has their design inspired in AMENITIES

(MEthodology for aNalysis and desIgn of cooperative systEmS). AMENITIES is

a methodology which allows addressing the analysis and design of CSCW

systems systematically and which facilitates subsequent software development.

It allows the realization of a conceptual model of cooperative systems and

focuses on the group concept. It covers significant aspects of both group

behavior (dynamism, synchronization, etc.) and structure (organization, laws,

etc.). The resulting specification contains relevant information (cooperative

tasks, domain elements, person-computer and person-person dialogues, etc.)

to the creation of the user interface.

The objective of this paper is to present the current freeTribe design principles

and characteristics, with an especial emphasis on the front-end extension to

support synchronous awareness in the Web context. To do this, we have

organized this paper as follows. In the next section we present a high-level

overview of the freeTribe fundamentals. In the Section 3 is presented the

explanation of RIA infrastructure that we use to update freeTribe. Then, in

Sections 4 and 6 we include in this paper the awareness techniques and

mechanisms supported by the new version of freeTribe. Finally, we conclude

this paper in Section 6 by summarizing the exposed topics.

2. Overview of the freeTribe fundamentals

The development of collaborative systems is a complex task, which involves

software technologies and cognitive sciences in different areassuch as

distributed programming, human-computer interaction and many others. This

situation is not ideal because it requires great programming efforts. Fortunately,

design patterns, software frameworks, and middlewares are increasing their

popularity since they have a high reusability impact and suitable relationships

(Schmidt & Buschmann, 2003) To address the freeTribe implementation

problem, we have designed it as a groupware framework. Some methodologies

for the development of a framework have been suggested that use domain

analysis, software evolution, and design patterns. This section presents an

overview of design patterns, frameworks, and middlewares and describes how

these technologies complement each other to enhance their reuse and

productivity.

2.1. Middlewares

As mentioned before, a groupware supports collaboration among group

members that can be in different places at the same time. This capability

requires a distributed architecture, usually Web applications with client/server

architecture. This model is very useful when collaboration is asynchronous (e.g.

the e-mail applications), but in synchronous interactive situations it is not very

efficient. For that reason we consider the use of a middleware-based

architecture as mechanisms of distributed communication, instead of a Web-

based infrastructure. We wish to emphasize than with the middleware-based

architecture it is also possible to surf the Web.

Over the past decade, a number of object-oriented middleware standards have

emerged and matured, such as the Common Object Request Broker

Architecture (CORBA) and Distributed Component Object Model (DCOM).

Currently, the developers who are looking for an object-oriented middleware

platform are offered some alternatives. Therefore, it is important to make careful

selections. For example, .NET/WCF has the drawback that it supports only a

limited number of languages and platforms. Java Remote Method Invocation

(RMI) is a Java-only solution. CORBA has got the high degree of complexity of

an aging platform, coupled with ongoing vendor attrition. Web Services have

severe inefficiencies and the need of using proprietary development platforms,

as well as security issues (Henning & Spruiell, 2012).

For our purposes, we have selected the Internet Communications Engine (Ice)

because its applications are open-source, suitable for use in heterogeneous

environments: client and server can be written in different programming

languages, run on different operating systems and machine architectures, and

they communicate using a variety of networking technologies. The source code

for these applications is portable regardless of the deployment environment

(Henning & Spruiell, 2012).

2.2. Object Oriented Frameworks

A framework is a collection of classes that provides a set of services for a

particular domain; a framework thus exports a number of individual classes and

mechanisms that developers can reuse or adapt. It is characterized by three

important features (Fayad et al., 1999):

First, a framework exhibits Inversion of Control (IoC) at runtime via callbacks to

component hook methods after the occurrence of an event such as a mouse

click or data arriving on a network connection. When an event occurs, the

framework calls back to a virtual hook method in a pre-registered component

which then performs application-defined processing in response to the event.

The virtual hook method in the components decouples the application software

from the reusable framework software, which makes it easier to extend and

customize the applications as long as the interaction protocols and quality

properties are not violated.

Second, a framework provides an integrated set of domain-specific structures

and functionalities. Reuse of software depends largely on how well frameworks

model the commonalities and variability in application domains. By leveraging

the domain knowledge and prior efforts of experienced developers, frameworks

embody common solutions to recurring application requirements and software

design challenges that need not be recreated and re-validated for each new

application.

Finally, a framework is a semi-complete application that programmers can

customize to form complete applications by extending reusable components in

the framework. In particular, frameworks help the canonical control flow of

applications in a domain into architectures and families of related components.

At runtime, these components can collaborate to integrate customizable

application-independent reusable code with customized application-defined

code.

2.3. Design patterns

The design of a groupware framework can be greatly improved by using design

patterns. A design pattern is a description of communicating objects and

classes which is customized to solve a general design problem in a specific

context. Each pattern represents a common and recurring design solution

which can be applied over and over again in different problem-specific contexts

(Gamma et al., 1995). Patterns provide the designer with:

a. Abstract templates on how to make specific parts of a framework more

flexible towards changes.

b. A mechanism to document the architecture of a framework using a high
abstraction level vocabulary.

c. A mechanism to impose rules about how to reuse or extend the framework.

d. A higher level of documentation for a complex framework consisting of
numerous heavily interconnected classes and objects.

e. Guidance on how to extend the framework with new variations and whether
or not extensions can be made.

2.5. AMENITIES methodology

The natural complexity of CSCW systems demands great efforts in

specifications and development. The development of groupware applications is

more difficult than that of single-user applications given that social protocols

and group activities must be considered in order to obtain a successful design.

AMENITIES (Garrido et al., 2004) is a methodology which allows addressing

the analysis and design of CSCW systems systematically and which facilitates

subsequent software development. It allows the realization of a conceptual

model of cooperative systems and focuses on the group concept. It covers

significant aspects of both group and structure. The resulting specification

contains relevant information (cooperative tasks, domain elements, person-

computer and person-person dialogues, etc.) to the creation of the user

interface.

Figure 1. General diagram of AMENITIES methodology (Garrido, et al., 2004).

This methodology proposes the description of a cooperative system at two sets

of models (Garrido, et al., 2004):

1. Models used in techniques for the capture and description of requirements.
The requirements elicitation process is mainly accomplished by means of the
application, mainly, of ethnography and use case techniques.

2. Cooperative model: It is a conceptual model that describes the basic
structure and behavior of the complete cooperative system. This model is
built hierarchically on the basis of other models, each one focused on
providing a different view of the system. A structured method is proposed in
order to build the cooperative model systematically. This method consists of
the following stages: Specification of the organization, role definition, task
definition and specification of interaction protocols.

The General diagram of AMENITIES methodology is presented at Figure 1,

which shows the principal models and general stages. The general stages are

(1) system analysis and obtaining of requirements; (2) modeling of the

cooperative system; (3) analysis of the cooperative model; (4) system design;

and (5) system developing. AMENITIES follow an iterative simple process,

allowing carrying out a refining of the model as a consequence of the analysis

of this, as well as a revision of the requirements from the start or of the

cooperative model that could contribute news or different information to

consider.

Figure 2. Mapping of cooperative task and interaction protocols to groupware

components
(Rodríguez et al., 2007).

A case of study that apply this methodology was presented by Garrido (Garrido,

et al., 2004), they considered a case study based on a help system for the

decision of risky operations by financial institutions. In this study, they described

a business process to grant a mortgage which a client has applied for in a

branch office. The first step in a business process to grant a mortgage consists

of realizing a feasibility study and making a report with all the information. The

case study includes three organizations: branch, valuation office and notary

office. The Branch organization has three roles: Bank Manager, Head of Risk

and Teller. In Figure 3 they show an example of user interface of the subactivity

decideConcession, which presents a shared workspace (the Debt Report) and

a DIChat (Chat for online users) component (4) to implement the interaction

between the actor playing the bankManager role and the actor playing the

headOfRisk role. Besides, the users can observe a Telepointer (Pointer

movements of another user) component (5) on debt report corresponding to the

action of the actor playing the bankManager role at that moment.

3. Making Web-based infrastructure with

RIA

Today we save our information in Web sites, more than that, we have Web

applications. That’s where the RIA comes in. A RIA isn’t a single specific thing;

it’s more of a paradigm, almost an approach to Web application development.

RIA are characterized by appearing in many ways to look, feel, and function just

like those native applications we left behind.

Ajax (Asynchronous JavaScript and XML) represents a paradigm shift for some

people (even most people, given what most Web applications are today)

because it can fundamentally change the way you develop a Web application

(Ullman, 2012). The term AJAX is an overly-complicated acronym for saying

that processes can take place in the background while the user is performing

other tasks.

Ajax is a kind of next-generation DHTML; hence, it relies heavily on JavaScript

to listen to events triggered by user activity and manipulates the visual

representation of a page (that is, the document object model, or DOM) in the

browser dynamically (Fränkel, 2011). Ajax is, at its core, an exceedingly simple,

and by no stretch of the imagination original, concept: it is not necessary to

refresh the entire contents of a Web page for each user interaction, or each

event, if you will. The server is no longer completely responsible for rendering

what the user sees; some of this logic is now performed in the user’s browser.

At the moment, we have literally thousands of JavaScript libraries to choose

from, and many of them are rather good (others, not so much). Researchers

have dedicated much time to the study of how CSCW technologies might create

some level of awareness between workers. Systems have been designed to

enhance collaboration through the provision of information to create or maintain

awareness of the group members. Even though different approaches have

been introduced to address awareness, its creation and maintenance,

researchers agree that most collaboration demands knowledge of others’

activities, and many have argued extensively that awareness is crucial for

groups when performing their joint activities.

An important share of applications developed today uses thin-client paradigm

(Fränkel, 2011), most of the time with a touch of Ajax augmentation.

Unfortunately, there is no clear leader for web applications. Some reasons

include the following:

 Flex would be a good candidate, as the technology is mature and Adobe a

commercial force to be reckoned with, but Apple did not add the Flash player

to its iOS platforms. Thus, surfing mobile with these devices cuts you from

Flex content.

 Ext JS makes web application development simple by: providing easy-to-use

cross-browser compatible widgets, interacting with the user and browser via

the EventManager, and communicating with the server in the background

without the need to refresh the page, but it still do not have a good

integration with Java.

 Most developers know how to develop plain old web applications, with

enough Ajax added in order to make them usable by users.

 ZK is an event-driven, component-based framework to enable rich user

interfaces for web applications. ZK includes an Ajax-based event-driven

engine, a rich set of XML User Interface Language and XHTML components,

and a markup language called ZK User Interface Markup Language. ZK does

not require you to have any knowledge of JavaScript to develop Ajax-based

web applications, since the ZK engine auto-generates the JavaScript code,

and offers a good integration with Java.

 GWT, although new and original, is still complex and needs seasoned

developers in order to be effective .

3.1. Vaadin framework

Vaadin Framework is a Java web application development framework that is

designed to make creation and maintenance of high quality web-based user

interfaces easy. Vaadin supports two different programming models: server-

side and client-side. The server-driven programming model is the more

powerful one, and essentially lets you forget the web and program user

interfaces much like you would program any Java desktop application with

conventional toolkits such as AWT , Swing, or SWT, but easier (Fränkel, 2011).

While traditional web programming is a fun way to spend your time learning

new web technologies, you probably want to be productive and concentrate on

the application logic. The server-side Vaadin framework takes care of managing

the user interface in the browser and the AJAX communications between the

browser and the server. With the Vaadin approach, you do not need to learn

and debug browser technologies, such as HTML or JavaScript.

For our purposes, we have selected this framework because its represent a

unique framework in the current ecosystem in order to develop rich CSCW

systems; its differentiating features include the following (Fränkel, 2011):

 There is no need to learn different technology stacks, as the coding is solely

in Java. The only thing to know beside Java is Vaadin's own API, which is

easy to learn. This means: the UI code is fully object-oriented, here's no

spaghetti JavaScript to maintain, furthermore, the IDE's full power is in our

hands with refactoring and code completion.

 No plugin to install on the client's browser, ensuring all users that browse our

application will be able to use it "as is".

 As Vaadin uses GWT under the cover, it supports all browsers that GWT

also supports. Therefore, we can develop a Vaadin application without

paying attention to the browsers and let GWT handle the differences.

 Moreover, Vaadin uses an abstraction over GWT so that, in theory, you can

use another rendering engine, even Swing! This architecture works toward

alleviating risks of GWT becoming a closed source in the future and the

Vaadin team is committed to open source.

 Finally, Vaadin conforms to standards such as HTML and CSS, making the

technology future proof. For example, many applications created with Vaadin

run seamlessly on mobile devices although they were not initially designed to

do so.

4. Awareness techniques

Situation awareness research focuses on each individual’s capacity to perceive

elements and the cognitive processes involved in maintaining awareness of the

environment. Gutwin and Greenberg (1996) define workspace awareness as

up-to-the-moment understanding of another person’s interaction with the

shared workspace. It is knowledge about the group’s working environment,

which creates an understanding of people within a workspace. In a

collaborative environment, awareness involves knowledge about the people

one is collaborating with (presence, identity, and authorship), the activities they

are working on (actions, intentions and artifacts manipulated) and where

(location of work, gaze direction, view and individual reach). Historical

awareness information also includes action, artifact, and event history and

should be provided in asynchronous work situations.

Ethnographic studies have determined that awareness allows group members

to manage the process of working together and is necessary for coordination of

group activities (Dourish & Bellotti, 1992). Being aware of others’ activities in a

workspace allows participants to better understand the boundaries of their

actions, which in turn help them, fit their own actions into the collaborative

activity stream. This also enables groups to better manage coupling levels

between their activities, helping people decide who they need to work with and

when to make the transitions from looser to tighter coupling (Heath & Luff,

1991). Furthermore, awareness simplifies communication by allowing

individuals to artifacts, the workspace can be used as reference the shared

environment and elements within it: When discussing shared a communication

prop (Brinck & Gomez, 1992). This makes awareness an important building

block for the construction of team cognition (Gutwin & Greenberg, 2004) and an

enabler of shared understanding that allows individuals to get a better sense of

the work that is being performed by others (Gutwin, Greenberg, Blum, & Dyck,

2005).

5. Strategic alienation to update freeTribe

There are several ways of defining and implementing awareness. Various

research projects have used their own taxonomy and interpretation of

awareness for creating frameworks and systems. For instance, Gutwin &

Greenberg (2002) classified awareness in two types: situational, and

workspace and they suggested that situational awareness underlies the idea of

workspace awareness in groupware systems. Their definition of workspace

awareness included how people interact with the workspace, rather than just

awareness of the workspace itself. Simone and Bandini (2002) identified two

kinds of awareness: (a) by-product awareness that is generated in the course of

the activities people must do to accomplish their collaborative tasks; (b) and

add-on awareness that is the outcome of an additional activity, which is a cost

for the collaborators to what they must do and is discretional in that it depends

on collaborators’ evaluation of the contingent situation. Chalmers (2002),

likewise, divided the awareness in two kinds: awareness of people and of

information artifacts. He suggested implementing activity centered awareness

tool, in that it focuses on presenting the ongoing appearance and activity of

people.

For the purpose of the work reported here, a more comprehensive and well-

accepted taxonomy of awareness, which addresses four kinds of awareness

(Liechti & Sumi, 2002) as listed below, will be used.

1. Group awareness. This kind of awareness includes providing information to

each group member about the status and activities of the other collaborators
at a given time.

2. Workspace awareness. This emphasizes the fact that awareness generally
emerges when people share a space. In other words, this kind of awareness
refers to a common space that the group members share and where they
can bring and discuss their findings and create a common product.

3. Contextual awareness. This type of awareness relates to the application
domain, rather than the users. Here, we want to identify what content is
useful for the group and what the goals are for the current project.

4. Peripheral awareness. This refers to the human ability toprocess information
at the periphery of the attention, witha very low overhead. In other words,
peripheral awareness relates to the information that should be kept separate
(on their periphery) from what a participant is currently viewing or doing.

freeTribe is a framework FLOSS (Free Open-Source Software) implemented

using the Java Platform and ICE middleware. These technologies allow to

freeTribe build CSCW systems based applications are open-source, suitable for

use in heterogeneous environments: client and server can be written in different

programming languages, run on different operating systems and machine

architectures, and they communicate using a variety of networking

technologies.

Figura 3. freeTribe software architecture

Figure 3 shows freeTribe software architecture based on three layers:

 First Level: the lower level is the base layer that manages the

communications protocols.

 Second Level: it contains the necessary services to represent the concepts

of AMENITIES (Garrido, et al., 2004), as well as the security and awareness

services.

 Thi rd Level: at the upper level, there is a tool layer that represents systems

developed over lower layers and a collaborative server.

The Figure 4 shows the relationship betwen Amenities, freetribe and distributed

groupwares.

Figure 4. Relationship betwen Amenities, freetribe and distributed groupwares.

6. Conclusion

The CSCW community has been developing a lot of groupwares in the Web

context through the last few years, but many of these developments address

only specific problems or do not adequately support efficient synchronous

awareness interaction. Therefore, it is convenient to see around the RIA

frameworks and middlewares platforms as complements for traditional Web

development technologies. In this paper we presented four kinds of

synchronous awareness techniques through its implementation in freeTribe with

the complements Vaadin and ICE.

Acknowledgements

We would like to thank Livan K. Badías-Ibarra from the University of Informatics

Science (Cuba), for support and discussions concerning with freeTribe

evaluation and for all of freeTribe community members for thei r valuable time

and continues inputs.

References

Coleman, D., & Levine, S. (2008). Collaboration 2.0: Technology and Best

Practices for Successful Collaboration in a Web 2.0 World. Silicon Valley,

California, USA: HappyAbout.info.

Ellis, C. A., Gibbs, S., & Rein, G. (1991). Groupware: Some issues and

experiences. Communications of the ACM, 34(1), 9-28.

Fayad, M., Schmidt, D., & Johnson, R. (1999). Building application frameworks:

Object-oriented foundations of framework design.

Fränkel, N. (2011). Learning Vaadin powered by Vaadin-built RIAs.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:

Elements of reusable object-oriented software: Addison-Wesley.

Garrido, J., Gea, M., Noguera, M., González, M., & Ibáñez, J. (2004). Una

Propuesta Arquitectónica para el Desarrollo de Aplicaciones Colaborativas.

Interacción 2004, 164--171.

Henning, M., & Spruiell, M. (2012). Distributed Programming with Ice: ZeroC.

Hurtado-Matos, L. I., & Rodríguez-Cano, J. C. (2006). Proposal of a Framework

for Distributed/ Groupware Development. Ingeniería Informática, Título de

Grado, Universidad de Holguín, Holguín, Cuba.

Rodríguez, M. L., Garrido, J. L., Hurtado, M. V., & Noguera, M. (2007). An

Approach to the Model-Based Design of Groupware.

Multi-user Interfaces. CRIWG 2007, 157–164.

Schmidt, D., & Buschmann, F. (2003). Patterns, frameworks, and middleware:

Their synergistic relationships. Paper presented at the 25th International

Conference on Software Engineering.

Ullman, L. (2012). Modern JavaScript: Develop and Design: Peachpit Press.

Biographical notes:

J. C. Rodríguez-Cano is PhD candidate from the University of

Granada (Spain), Rodríguez-Cano received his Software

Engineering degree in 2006 at the University of Holguín (UHO),

Cuba. Since 2006, he has worked on CSCW projects within the

Research Group in Distributed Systems at the UHO. Currently, he

is professor at the Department of Informatics at the UHO, Cuba. His research

interests include collaborative information retrieval (IR) techniques, search-

driven software development, and P2P retrieval. He has been co-organizer of

the Modern Applications of IR workshop held at V International Conference

UHO 2011, co-organizer of the Collaborative Information Retrieval workshop

held at CIKM 2011, and co-organizer of the Collaboration, Recommendation

and Social Search workshop held at VI International Conference UHO 2013.

Ricardo_Delgadillo_Lizaola is PhD candidate from the

University of Granada (Spain), professor in the engineering

department of CUCSUR (Centro Universitario de la Costa Sur) at

the University of Guadalajara, since 1993. He has taught at

several universities and has worked as a consultant in the

implementation of new technologies in different companies. Currently working

on several projects related to CSCL: Computer-supported collaborative learning

with professors from the University of Olguin (CUBA) and Pontifical Catholic

University of Peru (PERU). His research interests include Soft computing

applications for database technologies, collaborative information retrieval (IR)

techniques, retrieval and Cognitive Load Measurement in Web Search,

Computer-supported Cooperative Work (CSCW) and Computer-Supported

Collaborative Learning (CSCL).

Humberto Rodríguez-Avila is PhD candidate from the University

of Granada (Spain), Rodríguez-Avila received his Software

Engineering degree in 2011 at the University of Holguín (UHO),

Cuba. Since 2011, he has worked on CSCW & CIS projects within

the Research Group in Distributed Systems at the UHO.

Currently, he is professor of Object-Oriented Programming, Data Structures and

Algorithms at the Department of Informatics at the UHO, Cuba. His research

interests include Collaborative Information Seeking techniques, P2P retrieval

and Cognitive Load Measurement.

Eduardo Escofet got his B.Sc. from the Central University of Las

Villas, Cuba in Computer Sciences Specialized in Artificial

Intelligence in 1994. He obtained a M.Sc. degree in Business

Information Technology specialized in Business Executive

Decision Making in 1997 from the University of Holguín, Cuba and

another M. Sc. in Information Technologies and Soft-computing in 2003 from

the Univeersity of Granada, Spain. He has lectured at several universities,

developed multiple software products and advised various theses and software

projects. Nowadays, he is working in software-driven innovation companies as

project manager, software developer and quality engineer. His main areas of

interests are application framework development, service-oriented architecture

integration, business intelligence engineering, Web and mobile-based business

strategies and software quality improvement methods.

Esta obra está bajo una licencia de Creative Commons

Reconocimiento-NoComercial-CompartirIgual 2.5 México.

http://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES

