COMPUTACION E INFORMATICA

Recibido 2 Sep. 2025 ReCIBE, Anio 14 No. 3, Dic. 2025
Aceptado 25 Nov. 2025

Entrenamiento de una red neuronal de seguimiento de
senales: un enfoque metaheuristico mediante optimizacion
por enjambre de particulas

Training a Signal-Tracking Neural Network: A
Metaheuristic Approach Using Particle Swarm
Optimization

Alma Aide Sanchez Ramirez

Alvaro Anzueto Rios'
aanzuetor@ipn.mx

" Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias Avanzadas del IPN.

C2-1



RESUMEN

A medida que los sistemas complejos y no lineales aumentan su cantidad de datos; como en la
actualidad con el uso de aplicaciones que registran posiciones y otras actividades que
desarrollamos diariamente, los sistemas inteligentes deben aprender a partir de grandes
volumenes de datos y adaptarse a entornos cambiantes. En muchos casos la optimizacién basada
en métodos clasicos resulta insuficiente, por lo que los algoritmos metaheuristicos se han vuelto
una herramienta para la optimizacion de modelos complejos, con aplicaciones que van desde el
disefio de redes neuronales, sistemas de control y el ajuste de modelos predictivos. Por esta razon,
resulta relevante evaluar el desempefio de estos algoritmos en diferentes campos. En este trabajo
se aborda el entrenamiento de redes neuronales, para lo cual se presenta una comparacién entre
dos métodos de entrenamiento de tipo forward propagation para la para la tarea de seguimiento de
sefales temporales, con el objetivo de ajustar sus parametros sinapticos y que la neurona intente
aproximarse a una sefial de referencia. Como alternativa al entrenamiento basado en el algoritmo
de Backpropagation, que utiliza el descenso del gradiente para minimizar el error cuadratico medio
(MSE), se implementa el algoritmo de Optimizacion por Enjambre de Particulas (PSO), una técnica
de busqueda global que opera sin necesidad de derivadas y realiza una exploracion simultanea del
espacio de solucion. Para evaluar y comparar el desempefio de ambos métodos, se realizaron 30
ejecuciones para cada algoritmo. El rendimiento se midié con el MSE final, la tasa de éxito
(definida como un MSE inferior a 0.005) y el tiempo de cdmputo total. Adicionalmente, se analiza la
superficie de solucion generada por la red neuronal, representando la funcién de costo en términos
de dos pesos seleccionados, lo cual permite ilustrar la presencia de multiples 6ptimos locales y su
impacto en la eficacia de cada algoritmo. Los resultados obtenidos demuestran que, aunque
Backpropagation tiende a converger rapidamente, es susceptible a minimos locales, mientras que
PSO mostré mayor estabilidad frente a la topologia no convexa de la superficie de solucion,
logrando convergencia hacia regiones de bajo error en la mayoria de los casos evaluados. Las
observaciones realizadas permiten discutir las ventajas y limitaciones de cada enfoque en
contextos donde las funciones objetivo son no diferenciables

Palabras clave: Redes neuronales artificiales, optimizacién de enjambre de particulas,
Backpropagation, Seguimiento de sefales, aproximacion de funciones, optimizacién metaheuristica,
superficie de solucion.

ABSTRACT

As complex, nonlinear systems generate increasing amounts of data—for instance, through modern
applications that continuously record positions and other daily activities—intelligent systems must
learn from large data volumes and adapt to changing environments. In many cases, optimization
based on classical methods becomes insufficient, so metaheuristic algorithms have emerged as
powerful tools for optimizing complex models, with applications ranging from neural network design
and control systems to the fine-tuning of predictive models. For this reason, it is important to assess
the performance of these algorithms in different domains. In this work, we focus on the training of
neural networks and present a comparison between two forward-propagation training methods for
the task of tracking temporal signals, with the goal of adjusting their synaptic parameters so that the
neuron attempts to approximate a reference signal. As an alternative to training based on the
Backpropagation algorithm, which uses gradient descent to minimize the mean squared error
(MSE), we implement the Particle Swarm Optimization (PSO) algorithm, a global search technique
that operates without requiring derivatives and performs a simultaneous exploration of the solution
space. To evaluate and compare the performance of both methods, 30 runs were carried out for
each algorithm. Performance was measured using the final MSE, the success rate (defined as an
MSE below 0.005), and the total computation time. Additionally, the solution surface generated by
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the neural network is analyzed by representing the cost function in terms of two selected weights,
which makes it possible to illustrate the presence of multiple local optima and their impact on the
effectiveness of each algorithm. The results show that, although Backpropagation tends to
converge quickly, it is susceptible to local minima, whereas PSO exhibited greater stability with
respect to the non-convex topology of the solution surface, achieving convergence toward low-error
regions in most of the evaluated cases. These observations support a discussion of the advantages
and limitations of each approach in contexts where the objective functions are non-differentiable.

Keywords: Artificial Neural Networks, Particle Swarm Optimization, Backpropagation, Signal
Tracking, Function Approximation, Metaheuristic Optimization, Error Landscape.

1. INTRODUCCION

La capacidad de aproximar funciones y seguir sefales dinamicas ha representado un desafio
central en areas tan diversas como la ingenieria de control, las telecomunicaciones y el
procesamiento de sefales biomédicas (Ljung, 1999). En este contexto, las Redes Neuronales
Artificiales (RNA) han demostrado ser herramientas, capaces de capturar relaciones complejas y
no lineales a partir de datos experimentales (Goodfellow et al., 2016; Hagan et al., 2014).

El enfoque mas utilizado para entrenar este tipo de redes es el algoritmo de Backpropagation,
popularizado por Rumelhart y colaboradores en 1986. Este método, basado en el descenso de
gradiente, ajusta los pesos de la red minimizando iterativamente el error. Sin embargo, su eficacia
depende de la naturaleza de la superficie de solucion, una superficie multidimensional definida por
los parametros de la red. En superficies de solucion no convexas, que son comunes en problemas
no triviales, los métodos basados en gradiente corren el riesgo de converger a minimos locales,
como bien sefalan investigaciones previas (Choromanska et al., 2015) ), lo que resulta en un
rendimiento subdptimo del modelo.

Frente a esta limitacion, han surgido enfoques de optimizacion alternativos, entre las cuales
destacan los algoritmos metaheuristicos, que han sido aplicados con éxito al entrenamiento de
redes neuronales (Yudong & Lenan, 2015), ofrecen una estrategia de busqueda global que no
depende de la informacion del gradiente. Entre ellos, la Optimizacion por Enjambre de Particulas
(PSO), desarrollada por Kennedy y Eberhart (1995), opera con una poblacién de soluciones
candidatas (particulas) que exploran el espacio de busqueda de manera colaborativa. Cada
particula ajusta su trayectoria combinando su propia experiencia con la del mejor individuo del
enjambre, equilibrando asi la exploraciéon de nuevas areas del espacio de busqueda con la
explotacion de regiones prometedoras. Esta naturaleza estocastica y poblacional le permite
escapar de minimos locales y alcanzar soluciones mas robustas (Engelbrecht, 2007).

Este trabajo aborda el entrenamiento de una red neuronal con el algoritmo de PSO para una tarea
de seguimiento de sefiales, con el objetivo de responder las siguientes preguntas de investigacion:

1. ¢Puede el algoritmo PSO entrenar de manera efectiva la arquitectura de red neuronal
propuesta para esta aplicacion?

2. ;Como se compara su rendimiento, en términos de precisién, robustez y velocidad de
convergencia, con el enfoque clasico de Backpropagation?

Para responder estas preguntas, se llevé a cabo un analisis comparativo, en una red neuronal con
arquitectura 1-2-1 fue entrenada con ambos algoritmos, evaluando su desempefio a través de
multiples ejecuciones considerando tanto métricas cuantitativas como el comportamiento dinamico
de los algoritmos.

La estructura del articulo es la siguiente: la seccion 2 describe la arquitectura de la red, los
algoritmos y la configuracion experimental. La seccion 3 presenta los hallazgos empiricos, mientras
que la seccion 4 se dedica a la interpretacion y discusion de los resultados. El articulo concluye en
la seccién 5 con un resumen de las conclusiones del estudio.
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2. METODOLOGIA

En esta seccion se describe la estrategia experimental disefiada para comparar los algoritmos de
entrenamiento. Se presenta la arquitectura de la red neuronal, la formulacion del problema de
optimizacion, los algoritmos de entrenamiento empleados y los parametros que guiaron la
configuracion de las simulaciones.

2.1 Arquitectura de la Red Neuronal

Para el desarrollo del estudio se emplea una red neuronal artificial de tipo prealimentada (feed-
forward) con una arquitectura 1-2-1, compuesta por una capa de entrada, una capa oculta y una
capa de salida. La capa de entrada consta de una Unica neurona que recibe el valor escalar p. La
capa oculta contiene dos neuronas, y la capa de salida una sola neurona que produce la
aproximacion final, a. Esta arquitectura, aunque simple, es capaz de aproximar cualquier funcion
continua con un grado arbitrario de precisién, un principio conocido como el teorema de
aproximacion universal (Hornik et al., 1989).

La funcidén de activacion para las neuronas de la capa oculta es la sigmoide logistica (logsig), definida
como:
1
1 _
Fin=1ro= (1)
donde n es la entrada neta a la neurona. Esta funcién no lineal es fundamental para la capacidad
de la red de aprender relaciones complejas (Hagan et al., 2014)

La capa de salida utiliza una funcién de activacion lineal (purelin), que simplemente trasmite su
entrada neta sin alteracion:

f(n) =n (2)
Esta eleccion es estandar para tareas de regresiéon donde la salida no esta acotada a un rango

especifico. La salida completa de la red, a(p), es una composicién de estas funciones, tal como se
describe en Hagan et al. (2014, Capitulo 11).

2.2 Formulacién del Problema de Optimizacion

El objetivo es entrenar la red para que su salida a(p) siga una sefial sinusoidal de referencia, g(p),
definida como:

. T
g(p) =1+sin (Zp) (3)
El proceso de entrenamiento se formula como un problema de optimizaciéon donde se busca el
conjunto de parametros de la red que minimice el error de aproximacion. Todos los parametros
entrenables de la red (4 pesos y 3 polarizaciones) se consolidan en un Unico vector de parametros
de 7 dimensiones, 6:

0 = ['m%_l,w%:], b1, by, wi g, wi,, b (4)
La tarea consiste en encontrar el vector 6ptimo 6+ que reside en un espacio de busqueda R?
2.3 Funciodn de Fitness: Error Cuadratico Medio (MSE)

Para cuantificar el rendimiento de un conjunto de parametros 6 dado, se utiliza el Error Cuadratico
Medio (MSE) como funcion de fitness. El MSE es una funcidn de perdida estandar en problemas
de regresién con redes neuronales (Godfellow et al., 2016). Mide la diferencia promedio al

cuadrado entre la salida deseada t; es la salida deseada y ay la salida real de la red para un
conjunto de N puntos de entrenamiento.
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N
. 1 2
Fitness(8) = MSE = N ];(tk —ay) (5)
El objetivo de los algoritmos de optimizacién es encontrar el vector 8+ que minimice el valor de esta
funcion.

2.4 Algoritmos de Optimizacion

Se implementaron y compararon dos algoritmos de optimizacién con filosofias fundamentalmente
distintas. El primero, Backpropagation, es un método basado en gradientes, mientras que el
segundo, la optimizacién por enjambre de particulas (PSO), es un algoritmo metaheuristico sin
derivadas.

2.4.1. Optimizacion por Enjambre de Particulas (PSO)

PSO es un algoritmo metaheuristico poblacional inspirado en el comportamiento social de ciertos
animales (Kennedy & Eberhart, 1995). El algoritmo mantiene una poblacién (enjambre) de
soluciones candidatas (particulas), donde la posicion de cada particula i corresponde a un vector
de parametros 6;. En cada iteracion t, la velocidad v; y la posicidn 6; de cada particula se
actualizan de acuerdo con las siguientes ecuaciones:

vi(t+1) =wvi(t) + ciri(pbest; — 0,(t)) + cora(gbest — 0;(t))  (6)

0;(t+1) =6;(t)+vi(t+1) ()

donde w es el coeficiente de inercia, que modula la influencia de la velocidad anterior; ¢1 es el
coeficiente cognitivo, que pondera la atraccion hacia la mejor solucion personal de la particula
(pbest;), c2 es el coeficiente social, que pondera la atracciéon hacia la mejor solucion global del
enjambre (gbest). Los términos r1, r2 son numeros aleatorios en el intervalo [0,1] que introducen
estocasticidad en la busqueda. Un andlisis detallado de la influencia de estos parametros se
encuentra en trabajos como el de Clerc and Kennedy (2002).

2.4.2 Retropropagacion del Error (Backpropagation)

Backpropagation es un algoritmo de optimizacion local que implementa el descenso de gradiente
(Rumelhart et al., 1986). Utiliza la regla de la cadena para calcular el gradiente de la funcion de
error con respecto a cada parametro de la red. Este gradiente indica la direccion de maximo
crecimiento del error, por lo que los parametros se actualizan en la direccion opuesta para
minimizarlo. La regla de actualizacion para un parametro genérico 6; es:

03t +1) = 0;(1) — ;dﬁfE ®)

donde 1 es la tasa de aprendizaje, un hiperpardmetro critico que controla el tamafio del paso en

cada iteracion. El calculo del gradiente ﬁ’:’)%se realiza propagando las sensibilidades del error
j
hacia atras, desde la capa de salida hasta la de entrada (Goodfellow et al., 2016, Capitulo 7).

2.5 Configuracién Experimental

Todos los experimentos se realizaron utilizando un conjunto de datos de entrenamiento generado a
partir de la funcion objetivo en el rango p € [—2,2] con un paso de 0.5. Para asegurar la validez
estadistica de los resultados, cada experimento se repitié 30 veces con inicializaciones aleatorias
diferentes. Los parametros especificos para cada algoritmo se detallan en la Tabla 1. El
rendimiento se evalud utilizando el MSE final, la tasa de éxito (proporcién de ejecuciones con un
MSE final inferior a 0.005) y el tiempo total de cémputo.

C2-5



Parametro Simbolo / Configuracion Valor
Configuraciéon General

Numero de Ejecuciones - 30
Umbral de Exito (MSE) - 0.005
Optimizador PSO

Numero de Particulas - 40
Numero de Generaciones - 100
Coeficiente de Inercia w 0.6
Coeficiente Cognitivo c1 1.8
Coeficiente Social Cy 1.8
Optimizador Backpropagation

Numero de Epocas - 100
Tasa de Aprendizaje n 0.02

Tabla 1. Parametros de configuracion para los experimentos de optimizacion

3. RESULTADOS

En esta seccién se presentan los hallazgos empiricos obtenidos de la ejecucion de los
experimentos descritos en la metodologia. Se reportan los resultados de 30 ejecuciones de PSO,
evaluando la calidad de la aproximacién a la sefal objetivo, la convergencia del MSE, la evolucién
de los parametros sinapticos y la dinamica de exploracion-explotaciéon del enjambre.
Posteriormente, analiza la superficie de solucion y la presencia de multiples 6ptimos locales.
Finalmente, se comparan PSO y Backpropagation en términos de MSE, desviacién estandar, tasa
de éxito y tiempo de computo, ademas de las curvas de convergencia que describen el
comportamiento global de ambos algoritmos.

3.1 Analisis del Comportamiento del Optimizador PSO

El rendimiento del algoritmo PSO se evalué a lo largo de 30 ejecuciones independientes. La Figura
1 ilustra la capacidad de la red entrenada para aproximar la sefal objetivo en tres casos
representativos: la ejecucion con el menor MSE final (mejor caso), la ejecucion con el MSE
mediano y la ejecucion con el mayor MSE final (peor caso). En todos los casos, la red logra
capturar la forma sinusoidal de la sefal de referencia.

Rendimiento de la Red: Mejor, Mediana y Peor Ejecucion

Caso Mejor (Run #19) - MSE: 0.000060 Caso Mediana (Run #26) - MSE: 0.000181 Caso Peor (Run #4) - MSE: 0.005860

2001 == Funcion Objeto g(p) { == Funcién Objetivo glp) == Funcion Objetivo g{p)
= Salida de la Red a(p) = Salida de la Red a(p) e Salida de la Red a(p)
®  Puntos de Entrenamiento 1 @ Puntos de Entrenamiento @  Puntos de Entrenamiento

1.00

salidat/a

=20 =135 -10 -0.5 00 05 10 15 2.0 =20 -1.5 -1.0 =05 0.0 0.5 1.0 15 20 =20 =15 -1.0 -0.5 0.0 05 1.0 15 20
Entrada p Entrada p Entrada p

Figura 1. Comparacién de la aproximacion de la sefial para la mejor, mediana y peor ejecucion
del algoritmo PSO. La linea discontinua azul representa la sefal objetivo, la linea continua roja
es la salida de la red y los puntos negros son los datos de entrenamiento.

El proceso de convergencia del enjambre se muestra en la Figura 2. La figura presenta las curvas
de fitness (MSE) del mejor individuo a lo largo de las 100 generaciones para cada una de las 30
ejecuciones. La linea roja gruesa indica la trayectoria de convergencia promedio. Se observa una
rapida disminucién del error en las primeras generaciones, seguida de un ajuste mas fino en las
etapas posteriores.
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Convergencia de PSO

= Convergencia Promedio

1072 4

Mejor Fitness (MSE)

1073 4

6 2‘0 4‘0 6‘0 8‘(‘) 160 léO 14’0
Generacion / Epoca
Figura 2. Curvas de convergencia de PSO para 30 ejecuciones.
Cada linea representa una ejecucion individual, mientras que la linea
roja muestra el promedio.

Para comprender como el algoritmo encuentra una solucion, la Figura 3 rastrea la evolucién de los
siete parametros del vector 6 correspondientes a la mejor particula global (gbest) durante la mejor
ejecucion. Se puede observar como los valores de los parametros se ajustan y estabilizan a
medida que avanzan las generaciones.

Evolucién de Parametros Optimos (gbest) en la Mejor Ejecucién

1 1 2
5.0 wip — b — wf,

2.54

0.0

Valor del Parametro

—10.0

(I) Zb 4‘0 6b Bb 160 12‘0 11;0
Generacién
Figura 3. Evolucion de los siete parametros de la red neuronal (pesos y
polarizaciones) a lo largo de las generaciones para la ejecucién con el mejor

rendimiento.

Finalmente, la dindmica interna del enjambre se analiza a través de la métrica de diversidad, como
se muestra en la Figura. 4. La diversidad, medida como la desviacién estandar promedio de las
posiciones de las particulas, es alta en las primeras generaciones, lo que indica una fase de
exploracién del espacio de busqueda. Posteriormente, la diversidad disminuye de manera
constante, lo que significa que el enjambre converge hacia una regiéon prometedora en una fase de
explotacioén. Este equilibrio dinamico entre exploracidn y explotacién es un comportamiento
fundamental y deseable en los algoritmos de optimizacion poblacionales, ya que previene la
convergencia prematura a soluciones suboptimas (Eiben & Smith, 2003).
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Diversidad del Enjambre (Exploracién vs. Explotacion)

Diversidad (Desv. Estandar Promedio)

6 20 40 6‘0 BVO 1(;0 12=0 14;0
Generacion

Figura 4. Diversidad del enjambre de PSO alo largo de las generaciones.

Una alta diversidad indica exploracién, mientras que una baja diversidad

indica explotacién y convergencia.

3.2 Visualizacién de la superficie de solucién.

Para contextualizar el desafio de optimizacion, se visualizé una seccion transversal de la superficie
de solucién de 7 dlmenS|ones La Fl%ura 5 muestra el valor del MSE al vaPar dos de los pesos de
la capa de salida (w11 teniendo los otros cinco parametros fijos en sus valores
6ptimos encontrados por PSO La superficie de solucion exhibe una topografia compleja y no
convexa, con multiples valles y regiones de bajo error, lo que sugiere la presencia de numerosos
minimos locales.

Superficie de Error (Slice de w3 ; vs w3 ,) -
1

Y Optimo Encontrado

|

-

N
Log10(MSE)

2

Figura 5 Visualizacion de una rebanada 2D de la superficie de
solucién Los colores mas oscuros representan un MSE mas bajo
(mejor fitness). La estrella roja marca la ubicacién de la solucién
optima encontrada por PSO.
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3.3 Comparativa de Rendimiento: PSO vs. Backpropagation

La comparativa directa del rendimiento entre PSO y Backpropagation se resume en la Tabla 2. Los
valores representan el promedio y la desviacién estandar de las 30 ejecuciones para cada
algoritmo. Los resultados muestran que PSO alcanzé un MSE final promedio mas bajo y con menor
variabilidad (menor desviacion estandar) que Backpropagation. Ademas, PSO logré una tasa de
éxito del 100%, mientras que la de Backpropagation fue del 86.7%. En contraste, el tiempo de
cémputo total para las 30 ejecuciones fue considerablemente menor para Backpropagation.

Métrica PSO Backpropagation
MSE Final Promedio 0.000378 0.003157
Desviacion Estandar del MSE 0.000122 0.005118
Tasa de Exito (%) 100.0 86.7
Tiempo de Coémputo Total (s) 10.32 1.58

Tabla 2. Resumen comparativo de rendimiento entre PSO y Backpropagation

La diferencia en la dinamica de convergencia se ilustra en la Figura 6. PSO muestra una curva de
aprendizaje mas estable y consistente, alcanzando un nivel de error final mas bajo.
Backpropagation, aunque desciende rapidamente al principio, se estanca en un nivel de error
promedio mas alto.

Comparativa de Convergencia: PSO vs. Backpropagation

= PSO (Promedio)
100 4 = Backprop (Promedio)

10-1 4

MSE Promedio

1072 4

1073 4

(I) Zb 4|0 6b SID 160 l2|0 l"ILO
Generacion / Epoca
Figura 6 Comparacién de las curvas de convergencia promedio para PSO
(azul) y Backpropagation (verde) a lo largo de 100 iteraciones.

4. DISCUSION

Los resultados de la seccidn anterior proporcionan los datos para interpretar el rendimiento del
algoritmo de optimizacion. En esta seccion, se analiza el significado de estos hallazgos, se
abordan las preguntas de investigacion planteadas y se discuten las implicaciones del estudio.

4.1 Analisis del Comportamiento de PSO

Los resultados obtenidos sugieren que el desempefio consistente del optimizador PSO reside
directamente de su mecanica de busqueda poblacional. En la Figura 4 se observa un equilibrio
entre la exploracion inicial y explotacién posterior. Durante las iteraciones iniciales, la elevada
diversidad del enjambre le permite muestrear una amplia regio del espacio de parametros, lo que
aumenta la probabilidad de que las particulas localicen regiones prometedoras. A medida que el
enjambre localiza estas regiones, la comunicacién entre las particulas (a través del término gbest)
hace que la diversidad disminuya, lo que indica una transicion hacia una fase de explotacion.
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Esta fase de ajuste fino permite al algoritmo converger de manera precisa hacia una solucion de
bajo error, como se observa en la trayectoria de los parametros en la Figura. 3. Este
comportamiento dual es fundamental para el éxito de los metaheuristicas en problemas de
optimizacién complejos.

4.2 La Robustez de PSO frente a la Busqueda Local

La diferencia mas notable entre los dos métodos reside en su robustez. La Tabla 2 muestra que
PSO no solo alcanzé un MSE promedio inferior, sino que también tuvo una desviacién estandar
significativamente menor, junto con una tasa de éxito del 100%. En contraste, Backpropagation
mostré una mayor variabilidad en sus resultados y fallé en alcanzar el umbral de éxito en
aproximadamente el 13% de las ejecuciones.

Esta disparidad en la fiabilidad puede explicarse directamente por la topografia de la superficie o
plano de solucién visualizado en la Figura 5. La presencia de multiples valles y una estructura no
convexa crea trampas potenciales para un algoritmo de busqueda local como Backpropagation. Al
seguir exclusivamente la informacién del gradiente local, es propenso a quedar atrapado en un
minimo local que, si bien es un punto de bajo error, no representa la solucién éptima global. Por
otro lado, la naturaleza poblacional de PSO le permite mantener una perspectiva global del espacio
de busqueda. Si una parte del enjambre queda atrapada en un minimo local, otras particulas que
exploran diferentes regiones pueden encontrar una solucién superior y, a través del mecanismo de
comunicacién social, guiar al resto del enjambre hacia esa mejor area.

4.3 El Compromiso entre Velocidad y Fiabilidad

Si bien PSO demostré una mayor robustez, Backpropagation fue considerablemente mas rapido en
términos de tiempo de computo. Esta diferencia se debe a sus fundamentos operativos.
Backpropagation realiza un calculo de gradiente y una actualizacion de parametros por cada punto
de datos, un proceso computacionalmente eficiente. En cambio, PSO requiere evaluar la funcion
de fitness (que implica una pasada completa por todo el conjunto de datos) para cada una de las
40 particulas en cada una de las 100 generaciones.

Esto presenta un compromiso fundamental entre velocidad y fiabilidad. Para problemas donde la
superficie de solucion es relativamente simple o donde la velocidad de entrenamiento es el factor
critico, Backpropagation sigue siendo una opcién muy atractiva. Sin embargo, para problemas
“caja negra” o aquellos donde se sospecha una alta complejidad del paisaje de error y donde la
fiabilidad de la solucién final es primordial, el costo computacional adicional de un método como
PSO puede estar justificado para garantizar una convergencia a una solucién de alta calidad.

4.4 Limitaciones del Estudio

Es importante reconocer las limitaciones de este trabajo. El estudio se centré en una unica y
relativamente simple arquitectura de red neuronal (1-2-1) y en una tarea especifica de seguimiento
de sefial. El rendimiento comparativo de los algoritmos podria variar en arquitecturas mas
profundas o complejas, donde el numero de dimensiones del espacio de busqueda (el “curse of
dimensionality”) se convierte en un desafio mayor para cualquier algoritmo de optimizacién.
Ademas, solo se evalué PSO; otras metaheuristicas, como los algoritmos genéticos o la
optimizacién por colonia de hormigas, podrian ofrecer diferentes perfiles de rendimiento.

4.5 Implicaciones y Futuras Lineas de Investigacion

A pesar de sus limitaciones, los resultados de este estudio sugieren que los algoritmos
metaheuristicos como PSO son una alternativa viable y robusta para el entrenamiento de redes
neuronales, especialmente en contextos donde los métodos basados en gradiente pueden fallar.
Este es el caso de arquitecturas con funciones no diferenciable so problemas de optimizacién con
funciones de coste discontinuas.
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Seria valioso aplicar esta metodologia comparativa a problemas de mayor complejidad, como el
seguimiento de sefales cadticas o el entrenamiento de redes neuronales recurrentes. Otra area es la
investigacion de algoritmos hibridos que combinen las fortalezas de ambos enfoques. Por ejemplo,
se podria utilizar PSO para una busqueda global inicial que localice una regidon prometedora del
espacio de busqueda, y luego emplear Backpropagation para un ajuste fino y rapido dentro de esa
region.

5. CONCLUSIONES

Este estudio tuvo como objetivo evaluar la eficacia de la Optimizacion por Enjambre de Particulas
(PSO) como método de entrenamiento para una red neuronal en una tarea de seguimiento de
sefal, y comparar su rendimiento con el algoritmo de Backpropagation. A través de un riguroso
analisis experimental, se han extraido las siguientes conclusiones principales:

En primer lugar, los resultados confirman que PSO constituye un método de entrenamiento
notablemente robusto y eficaz para la arquitectura bajo estudio. Su desempefio no solo fue
consistente, sino infalible, alcanzando una tasa de éxito del 100% en todas las réplicas
experimentales. Esta remarcable confiabilidad puede atribuirse directamente a su mecanica de
busqueda poblacional, la cual, al equilibrar de manera inteligente la exploracién del espacio de
soluciones con la explotacion de regiones prometedoras, demostré una capacidad superior para
navegar los complejos paisajes de error tipicos de estos problemas.

El algoritmo PSO es un método de entrenamiento robusto y eficaz para la arquitectura de
red propuesta. Demostré una capacidad consistente para encontrar conjuntos de
parametros que minimizan el error de seguimiento, logrando una tasa de éxito del 100% en
todas las ejecuciones. Esto se deben a su dinamica de busqueda, que equilibra la
exploracion global y la explotacion local, que le permite navegar la superficie de solucion.

¢ Mientras que Backpropagation es mas rapido, su naturaleza de busqueda local lo hace
susceptible a minimos locales, lo que resulta en una mayor variabilidad de rendimiento y
una menor tasa de éxito. En contraste, PSO proporciona una solucion mas fiable y precisa,
posicionandolo como un método superior para problemas donde la calidad y la
consistencia de la solucién son criticas, a costa de un mayor tiempo computacional.

En resumen, este trabajo establece que las metaheuristicas, y en particular PSO, no solo son una
alternativa viable, sino una herramienta potente y fiable para el entrenamiento de redes
neuronales. Ofrecen una solucién robusta al desafio de superficies de solucién no convexas,
abriendo la puerta a su aplicacion en problemas de optimizacién mas complejos donde los
métodos tradicionales basados en gradiente pueden resultar insuficientes.
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