
49 
 

ELECTRÓNICA 
 
Recibido 14 Sep 2017    ReCIBE, Año 6 No. 2, Noviembre 2017  
Aceptado 5 Oct 2017  
 

New S-box calculation approach for 

Rijndael-AES based on an artificial neural 

network 

 
Nuevo enfoque para el calculo de la Caja-S para 

Rijndael-AES basado en una red neuronal artificial 

 

Jaime David Rios Arrañaga1  

jaime.rios.1xyz@gmail.com 

 

Janneth Alejandra Salamanca Chavarin1,  

salecita_ale@hotmail.com 

 

Juan José Raygoza Panduro1 

juan.raygoza@cucei.udg.mx 

 

Edwin Christian Becerra Alvarez1 

edwincbecerra@gmail.com 

 

 

 

 

 
 

 
 

1Centro Universitario de Ciencias Exactas e Ingenierías, 

Universidad de Guadalajara, Jalisco, México. 

mailto:jaime.rios.1xyz@gmail.com
mailto:salecita_ale@hotmail.com
mailto:juan.raygoza@cucei.udg.mx
mailto:edwincbecerra@gmail.com


50 
 

 

Abstract: The S-box is a basic important component in symmetric key encryption, 

used in block ciphers to confuse or hide the relationship between the plaintext 

and the ciphertext. In this paper a way to develop the transformation of an input 

of the S-box specified in AES encryption system through an artificial neural 

network and the multiplicative inverse in Galois Field is presented. With this 

implementation more security is achieved since the values of the S-box remain 

hidden and the inverse table serves as a distractor since it would appear to be 

the complete S-box. This is implemented on MATLAB and HSPICE using a network 

of perceptron neurons with a hidden layer and null error. 

 

Keywords: Artificial Neural Network, Cryptography, Circuits, SPICE. 

 

Resumen: La Caja-S es un componente básico en el cifrado de clave simétrica, 

usado en los cifradores por bloques para confundir o esconder la relación entre 

el texto plano y el texto cifrado. Este trabajo presenta una manera de desarrollar 

la transformación de los valores de entrada de la Caja-S especificada en el 

sistema de cifrado AES por medio de una red neuronal y los valores del inverso 

multiplicativo en el campo de Galois. Con esta implementación se logra mayor 

seguridad debido a que los valores de la Caja-S permanecen ocultos mientras 

que la tabla de los valores inversos en el dominio de Galois sirve de distractor 

pareciendo ser la verdadera Caja-s. Este trabajo fue implementado en MATLAB 

y HSPICE utilizando una red con neuronas del tipo Perceptron con una capa 

oculta, obteniendo los valores esperados por la Caja-S original sin error. 
 

Palabras clave: Circuitos, Criptografia, Red Neuronal Artificial, SPICE 
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1. Introduction 

In cryptography, an S-box consists of a look up table with the corresponding 8-
bit word for each possible input in a non-linear transformation, in which the input 
byte is considered the address of the table (Rodriguez-Henriquez, Saqib, Díaz & 
Koc 2007). The S-box represents a bricklayer non-linear function that can be 
decomposed in several boolean functions operating independently on a subset 
of bits from the input vector (Daemen & Rijmen, 2002). If the functions are linear 
they are called D-boxes. 
 
The operation of an S-box is as follows: when a transformation is required for a 
certain input, this input enters the S-box and points, or directs to the previously 
calculated output of its transformation and then the input is replaced, as shown 
in fig.1, where the value ai,j is substituted for the value bi,j as it passes through 
the S-box. 
 

 
Figure 1. Graphic representation of the use of an S-box 

 

Due to their importance, S-boxes are chosen and designed to be resistant to 
cryptanalysis, in literature several proposals with different characteristics are 
found, some of them based on neural networks, like the framework for the design 
of S-boxes used in ciphers based on neural networks by Noughabi (Noughabi & 
Sadeghiyan, 2010) and “a new scheme for implementing s-box based on neural 
network” by X. Zhang (Zhang, Chen, Chen, & Cao, 2015), others that optimize 
existing boxes such as the high speed implementation of S. Oukili for the AES S-
box (Oukili, Bri & Kumar, 2016) and low-area S-box implementation of Thomson 
(Thomson, Siva, & Priya, 2014); even new proposals such as the evolutionary 
design of S-Box of M. Yang (Yang, Wang, Meng & Han, 2011) and the based on 
chaotics maps of C. I. Rı̂ncu (Rı̂ncu & Iana, 2014). 

 
This article presents a substitution of the S-box for another module that calculates 
the AES  S-box outputs with the use of a neural network and the multiplicative 
inverse on Galois field  28 (GF (28)) of the input value to transform, or S-box input 
value. 
 
Section 2 introduces the AES algorithm giving a brief introduction to history and 
a complete description of the Rijndael-AES algorithm, in this section under the 
subsection “The Round Transformation” highlights the sub-Bytes function that 
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describe how the values of the S-box are calculated. Section 3 describes the 
proposed method, this includes the neural network topology and the approach 
for hardware implementation. The simulations are presented in section 4, this 
section is an explanation of the implementation, behavior and results in MATLAB 
and HSPICE. Finally conclusions are given in section 5. 
 

2. AES, Advance Encryption Standard 

Developed by Joan Daemen and Vincent Rijimen, Rijndael was finally chosen on 
October 2000 by the National Institute of Standards and Technology (NIST) 
among other encryption algorithms in an open process organized by the same 
institute on January 1997 to become the new Advanced Encryption Standard 
(AES) to replace Data Encryption Standard (DES) and triple-DES as encryption 
standard (Daemen & Rijmen, 2002). Following NIST specifications, AES is a 
symmetric block cipher algorithm with variable length of 128 bits, 192 bits and 
256 bits, with a variable length key of 128 bits, 192 bits y 256 bits and easy on 
hardware and software implementation (Daemen & Rijmen, 2002). 
 

Although it is common to talk about AES and Rijndael indistinctly, being Rijndael 
the selected algorithm for AES, there is a difference among them in the range of 
values supported by the block length and key length to use. In Rijndael, the block 
length and key length can be independently specified to any multiple of 32 bits, 
with a minimum of 128 bits and a maximum of 256 bits. AES fixes the length 
block and the length key to 128, 192 o 256 bits only (Daemen & Rijmen, 1999). 
 

Independently of technical differences in the length of block and key permitted, 
when talking about Rijndael or AES, we are talking about the same iterative block 
cipher algorithm. Inputs and outputs of Rijndael-AES are considered to be one-
dimensional arrays of 8-bits. For encryption the input is a Plaintext block and a 
cipher key, and the output is a ciphertext block. For decryption the inputs is a 
ciphertext block and a cipher key, and the output is a Plaintext block (Daemen & 
Rijmen, 2002). 
 

The cipher can be divided in two parts with different functionality: the 
transformation or encoding of the message, function called “The Round 
transformation” and denoted as “Round” and “FinalRound”, this encryption 
function is described in fig. 2 along with the functions that make it up, called steps; 
and the transformation of the key called “Key schedule” given by the function 
“KeyExpansion”. 
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Figure 2. Flowchart of the AES encryption algorithm 

 

The different transformation operates on an intermediate result called State 
which is represented as a rectangular array of bytes, with four rows and Nb 
number of columns. 

 

Similarly, the cipher key is represented as a rectangular array with four rows and 
Nk number of columns (Daemen & Rijmen, 1999), (Rodriguez-Henriquez et al., 
2007), (Daemen & Rijmen, 2002), (Katz & Lindell, 2008), where 
 

 
    

 

The number of rounds Nr depends on the values of Nb and Nk as presented in the 
table 1. 
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Table 1. Number Of Rounds Nr As Function Of Nb And Nk 

 

2.1. The Round Transformation 

As shown in the fig. 2, the round transformation is divided in Round and 
FinalRound. Round is formed by a sequence of four different and invertible 
mathematical transformations on GF(28) which are called steps: 1) SubBytes, 2) 
ShiftRows, 3) MixColumn, 4) AddRoundKey (Daemen & Rijmen, 1999), 
(Rodriguez-Henriquez et al., 2007), (Daemen & Rijmen, 2002). The FinalRound 
is similar to round but without the MixColumns function. 
 

2.1.1. subBytes. 

It is a non-linear transformation where each input byte of the state matrix is 
replaced by another byte produced by the transformation. This Transformation is 
defined in two steps (Daemen & Rijmen, 1999): 
 

 Multiplicative inverse: 

The input byte a is replaced by its multiplicative inverse x = a-¹ , with x = 0 

for a = 0. 

 Affine transformation:  

Defined by y = M × x ⊕ b, where M is a constant matrix of 8 × 8 bits, x 

represents the value to transform while b is a constant byte equal to 6316 

(011000112 ) (Daemen & Rijmen, 2002). 

 

The matrix representation of the transformation is shown in (3), where M is 

replaced by the constant matrix of 8×8 bits, x is expanded to the polynomial 

representation of a byte, starting with the most significant bit; and b the binary 

constant. 
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Another way to implement this transformation is to use the corresponding S-Box 

shown in fig. 3 replacing the input value (row, column) by the value that crosses 

them. 

 

 
Figure 3. AES S-box 

 

The inverse operation, called InvSubBytes, consists of the use of the inverse S-

Box of fig. 4 for each byte of the state. 

 
Figure 4. AES Inverse S-box 
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The inverse S-box is obtained by the applying the inverse of the affine 

transformation, shown in ec. 3 followed by taking the multiplicative inverse in 

GF(28). The inverse of (3) is represented in (4) (Daemen & Rijmen, 2002). 

 

 

  

 

(4) 

 

 

 

 
 

2.1.2. ShiftRows 

In ShiftRows, the rows of the state are shifted cyclically to the left in different 

proportions. Row 0 does not changes, but the remaining rows follow an offset of 

C1 , C2 and C3 bytes respectively, this proportion depends only of the block length 

Nb (Daemen & Rijmen, 2002). The inverse operation, called InvShiftRows, 

consists in a cyclic shift of the three bottom rows over Nb − C1 , Nb − C2 y Nb − C3 

bytes respectively. The table 2 shows the value of Cn per each possible Nb. 

Table 2. Shifted Bytes In Shiftrows Per Block Lenght 
 

2.1.3. MixColumns 

The MixColumns step is a bricklayer permutation operating on the state column 

by column. In Mixcolumns the state columns are considered as polynomials in 

GF (28) and multiplied modulo x4 + 1 with the fixed polynomial c(x) given by c(x) 

= (0316 )x3 + (0116)x2 + (0116)x + 0216 . This operation can be written as a matrix 

multiplication, let b(x) = c(x) a(x) mod x4 +1 as is show in (5). 

 

 

 

 

 

 

The inverse of MixColumns is called InvMixColumns. It is similar to MixColumns. 
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The transformation is performed by multiplying each column by the polynomial 

d(x) = (0B16)x3 + (0D16)x2 + (0916)x + 0E16, represented in (6) as a matrix 

multiplication (Daemen & Rijmen, 1999), (Daemen & Rijmen, 2002), (Parikh & 

Narkhede, 2016). 

                        

2.1.4. AddRoundKey 

In this transformation the state is modified with the bitwise XOR operation with 

the round key derived from the cipher key and the function Key Schedule. The 

length of round key is equal to the block length Nb (Daemen & Rijmen, 1999). 

The inverse of AddRoundKey is called InvAddRoundKey, and is applied in the 

same way as AddRoundKey applying the keys in reverse order (Rodriguez-

Henriquez et al., 2007). 

 

2.2. Key Schedule 

Consists in the expansion of the key and in the key selection round (Daemen & 
Rijmen, 2002). The key expansion specifies how the expanded key is calculated 
from the cipher key. The number of bits in the expanded key is equal to the block 
length multiplied by the number of rounds Nr plus one, generating a total of Nb × 
(Nr + 1) words, or Nr + 1 subkeys, one per each round (Bonadero, Liberatori, Bria 
& Villagarcı́a, 2005). 
 

The cipher key is expanded inside of the Expanded key. Round keys are taken 
from Expanded key as follows: the first round key consists on the initial Nb words, 
the second on the subsequent Nb words, and so on (Daemen & Rijmen, 1999). 
 

2.2.1 KeyExpansion. 

Expanded Key is a four byte linear array denoted by W [Nb × (Nr + 1)]. The first 
Nk words contain the cipher key, while all other words are defined recursively. 
KeyExpansion depends of the Nk value and is calculated as in fig. 5, employing 
the functions subBytes, Rotbyte and Rcon (Daemen & Rijmen, 1999), (Daemen 
& Rijmen, 2002). 
 
RotByte returns a word that results from a cyclical permutation from the input 
word, e.g., for an input {a,b,c,d} the output is {b,c,d,a}. 
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The constant Rcon is independent of N k and is defined in (7) as: 

where RC[i] represents an element in GF (28) with value x(i-1) such that: 
 

 

 

 

 

 

 

 

 

 
Figure 5. Flowchart diagram for KeyExpansion function 



59 
 

3. Proposed Method 

The modification consists in substituting the AES S-box for an Artificial Neural 
Network (ANN) that solves the transformation using as input the corresponding 
multiplicative inverse value GF (28) of the original S-box input value. To obtain 
the corresponding inverse a lookup table is used. The S-box is substituted for a 
module formed by a table with the inverse values obtained from (Pelzl & Paar, 
2010), (Srebrny, Kościelny & Kurkowski, 2013) and a neural network as  is shown 
in fig. 6. With this method two advantages are obtained, the first one is that the 
values of the S-box are hidden, and the second one is that it’s possible to change 
the values of the S-box just by a simply changing the weights. 

 

 
Figure 6. a) S-box representation. b) Representation of the S-box proposed 

 

 
The neural network topology was proposed by means of observation. The 
transformation is performed bitwise, nevertheless another arrangement is also 
acceptable. The neural network consists of eight subnetworks, one per bit, each 
one as illustrated in fig. 7 is composed by seven perceptron neurons in three 
layers: input layer, hidden layer and output layer. Based on neural networks that 
perform AND and XOR behaviors each neuron has two inputs and a pulse 
activation function given by (11). 

Figure 7. Neural network with one bit output 
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The circuit implementation was developed in HSPICE which is an electric circuit 
simulator (synopsys, 2003), (Piuri, 1991). In hardware implementation, 
Operational Transconductance Amplifiers (OTA) are used as proposed in 
(Kawaguchi, Umeno & Ishii, 2014), (Ghosh, LaCour & Jackson, 1994) in order 
to manage current signals and simplify the sum of the synaptic weights. 
 
The OTA is a voltage controlled current source (VCCS). Its main characteristics 
are high input impedance and high output impedance (Barclay & Wood, 1994), 
(Qing-Lin, Jian-You & Mei-Lun, 1991). The OTA macromodel is shown in fig. 8, 
where Vin1 and Vin2 are the voltage inputs, the voltage difference of these sources 
is reflected in nodes a and b.  
 

Figure 8. Macromodel for the Operational Transconductance Amplifier 
 

The output current Iout is proportional to the difference between these voltages as 
in eqn. 12. 

where gm is the transconductance gain, Vin1 the positive input voltage, Vin2 the 
negative input voltage and Iout the output current. 
 

The OTA is used to represent the neuron inputs, converting (in the input layer) or 
keeping (in the remaining layers) the input signal into a current signal and using 
the amplifiers gain (gm) as the corresponding synaptic weight. The signals are 
summed by simply connecting the OTAs outputs to a wire line which is then the 
input to the activation function. 
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4. Simulations 

The proposed network was simulated in Matlab, where it was tested and the 
expected operation for the S-box specified for AES was verified. An 
implementation using OTAs in HSPICE was performed, where the gain is 
equivalent to the corresponding weights. Simulating the electric behavior of the 
system. In the next subsections details of its implementation and results are 
given. 
 

4.1. Simulation and Results in MATLAB 

In the simulation the inverse value in GF(28) was used as input of the system and 
the results were compared and verified with its corresponding S-box values. For 
a better visualization of the results, the binary values were converted to decimal 
and are presented in fig. 9 highlighting that the values obtained correspond to 
those expected with an error of 0%. 
 

 
Figure 9. Expected vs. obtained values. Inputs from 0 to 255 

 

The synaptic weights used are shown in table 3, these values were obtained from 
neural networks with AND and XOR behaviors, hence there was no previous 
training of the network. 
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Table 3 Synaptic Weight Values 
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4.2. HSPICE Implementation and Results 

According to the structure proposed in fig. 7 the architecture shown in fig. 10 is 
implemented in HSPICE, where V1 through V8 represent the input signals, the 
weight, W, are represented by the transconductance of the OTAs, the sums are 
represented by linking the OTAs outputs, and finally the activation function 
described in (11) is applied. 
 
The structure in fig. 10 has one bit output, hence it’s necessary to replicate the 
structure in order to have an eight bit output. It should be noted that it is not 
necessary to replicate the voltage sources and their resistance, i.e. the inputs, 
only the current source, their resistance and the activation functions. 

Figure 10. S-box structure with 1 bit output 
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Circuit operation steps 

1. The input value is placed in the voltage sources V1 through V8 for the S-

box value that wants to be obtained. 

2. The voltage difference between nodes n11 and n12 is the voltage in source 

V1. This difference is multiplied by the gain (weight). This is repeated in 

voltage source V2 to V8. 

3. Since the outputs from the OTAs are given in current, they can be summed 

by joining them as follows: 

OTA1 output and OTA2 output are linked in Irl1 

OTA3 output and OTA4 output are linked in Irl2 

OTA5 output and OTA6 output are linked in Irl3 

OTA7 output and OTA8 output are linked in Irl4 

4. Activation function (11) is applied in Af1 through Af4. 

5. Af1 output is linked with Af2, and Af3 with Af4 

6. Activation function is applied in Af5 and Af6 

7. Af5 and Af6 outputs are linked 

8. 8) Activation function is applied in Af7 

9. 9) Af7 output corresponds to bit0 

 

As mentioned previously, the structure is replicated to obtain the eight output bits, 

therefore the same steps are repeated to obtain bit1 to bit7. 

 

To verify the circuit operation, tests were performed with the input values shown 

in table IV, the table displays some of the values found in the S-box and the result 

to those inputs, the next two columns show the input value for the proposed 

network which corresponds to the multiplicative inverse in GF(28) and the result 

obtained from that input. The results obtained from the network are identical, thus 

the operation of the network is validated. 

 

In figs. 11 and 12 the results obtained from the circuit for four inputs of the table 

are shown. 
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Figure 11. Obtained result for input 00 16 and 80 16 in GF (28) 

 

 
Figure 12. Obtained result for input 34 16 and 11 16 in GF (28) 

 

e.g. On the left side in fig. 11 the obtained result from the circuit to input 00 16 in 

GF(28) is 6316 , the result is verified in table 4. Similarly on the left side the result 

EC16 is obtained for an input 8016 in GF(28). 
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Table 4. Test Values For The Circuit Implemented In HSPICE 

 

5. Conclusion 

An implementation of an S-box using a neural network in MATLAB and HSPICE 

is presented, this neural network is based on the operations used to obtain the 

values of the S-box through 8 perceptron subnetworks and a lookup table with 

the inverse in GF(28). Even if this method of calculating S-box values for AES 

does not present an advantage reducing resources, since storing the inverse 

values for each possible input represent hundred percent of the necessary 

resources to store the original S-box, the values computed by a neural network 

offers greater security by maintaining the transformation values hidden and using 

a distractor or an apparently S-box that contains the inverse values in GF(28). 

The simulation results show that the implementation presents a null error, 

thereafter if the neural network were applied, it will not show changes in the 

results expected within the encryption algorithm because it simulates without 

error the operation of the S-box. 
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