_ Revista electronica o
" DE COMPUTACION, INFORMATICA, BIOMEDICAY ELECTRONICA

PUBLICACIONES

indice

Computacion e Informatica

Busqueda de patrones basada en trayectorias extraidas de
la respuesta de sistemas de segundo orden C117
Jesus Edgar Elizondo Nuiez, Carlos Guzman, Elivier Reyes,

Hector Escobar, Alberto Luque

Funciones, un algoritmo, BigQuery y la ausencia de
frameworks C2-16

Pedro Cano

Electronica

Varias aplicaciones de los sistemas de monitoreo
meteorolégico basados en loT en el sector agricola para
los agricultores de Bangladesh. E1-15
Md Sofiqul Islam, Md Saiful Islam, Jahangir Hossain Rabbi, A S

M Binjer Anayet Biddut, Md Saiful Hossen

Busqueda de patrones basada en
trayectorias extraidas de la respuesta de
sistemas de segundo orden.

Pattern search based on trajectories
extracted from second-order system
responses.

Jesus Edgar Elizondo Nufiez’
jesus.elizondo5693@alumnos.udg.mx

Carlos Guzman1
carlos.guzman8813@alumnos.udg.mx

Elivier Reyes1
elivier.reyes8810@alumnos.udg.mx

Hector Escobar1
hector.11294@gmail.com

Alberto Luque1
alberto.Ichang@academicos.udg.mx

" Universidad de Guadalajara

Resumen: Recientemente, en la literatura se han introducido varios esquemas metaheuristicos
nuevos. Aunque todos estos enfoques consideran fenémenos muy diferentes como metéaforas, los
patrones de busqueda utilizados para explorar el espacio de busqueda son muy similares. Por otro
lado, los sistemas de segundo orden son modelos que presentan diferentes comportamientos
temporales segun el valor de sus parametros. Tales comportamientos temporales pueden
concebirse como patrones de busqueda con multiples comportamientos y configuraciones simples.
En este articulo, se presentan un conjunto de nuevos patrones de busqueda para explorar
eficientemente el espacio de busqueda. Estos emulan la respuesta de un sistema de segundo
orden. El conjunto propuesto de patrones de busqueda se ha integrado como una estrategia
completa de busqueda, llamada Algoritmo de Segundo Orden (SOA), para obtener la solucion
global de problemas de optimizacion complejos. Para analizar el rendimiento del esquema
propuesto, se ha comparado en un conjunto de problemas representativos de optimizacion, que
incluyen formulaciones de referencia multimodales, unimodales e hibridas. Los resultados
numeéricos demuestran que el método SOA propuesto exhibe un rendimiento notable en términos
de precision y altas tasas de convergencia.

Palabras clave: métodos metaheuristicos; patrones de busqueda; sistemas de segundo orden;
métodos evolutivos.

Summary:

Recently, several new metaheuristic frameworks have been introduced in the literature.
Although these approaches rely on very different metaphors, the search patterns used to
explore the search space are quite similar. On the other hand, second-order systems are
models that exhibit various temporal behaviors depending on the values of their parameters.
These temporal behaviors can be interpreted as search patterns with multiple behaviors and
simple configurations. This paper presents a set of new search patterns designed to
efficiently explore the search space, which emulate the response of a second-order system.
The proposed set of search patterns is integrated into a complete search strategy called the
Second-Order Algorithm (SOA) to find the global solution to complex optimization
problems. To evaluate the performance of the proposed scheme, it has been compared
across a set of representative optimization problems, including multimodal, unimodal, and
hybrid benchmark formulations. Numerical results demonstrate that the proposed SOA
method exhibits remarkable performance in terms of accuracy and high convergence rates.

Keywords: metaheuristic methods; search patterns; second-order systems; evolutionary
methods.

C-2

1. Introduccion

Los algoritmos metaheuristicos se refieren a esquemas de optimizacién genéricos que emulan el
funcionamiento de diferentes procesos naturales o sociales. En los enfoques metaheuristicos, la
estrategia de optimizacion se lleva a cabo mediante un conjunto de agentes de busqueda. Cada
agente mantiene una posible solucién al problema de optimizacién y se genera inicialmente
considerando una solucion factible aleatoria. Una funcién objetivo determina la calidad de la solucién
de cada agente. Utilizando los valores de la funcion objetivo, en cada iteracion, se modifica la

posicion de los agentes de bisqueda, gmpleando un conjunto de patrones de busqueda que regulan
sus movimientos dentro del espacio de busqueda. Estos patrones de busqueda son modelos
abstractos inspirados en procesos naturales o sociales (Cuevas et al., 2020). Estos pasos se repiten

hasta que se alcanza un criterio de parada. Los esquemas metaheuristicos han confirmado su
supremacia en diversas aplicaciones del mundo real en circunstancias donde los métodos clasicos
no pueden ser adoptados.

En esencia, no existe una clasificacion clara de los métodos metaheuristicos. A pesar de esto, se
han propuesto varias categorias que consideran diferentes criterios, como la fuente de inspiracion,
el tipo de operadores o la cooperacion entre los agentes. En relacion con la inspiracion, los algoritmos
metaheuristicos inspirados en la naturaleza se clasifican en tres categorias: basados en la evolucion,
basados en enjambres y basados en la fisica. Los enfoques basados en la evolucién corresponden
a las estrategias de busqueda mas consolidadas que utilizan elementos de evolucion como
operadores para producir patrones de busqueda. En consecuencia, operaciones como la
reproduccién, la mutacion, la recombinacion y la seleccion se utilizan para generar patrones de
bdsqueda durante sus operaciones. Los ejemplos mas representativos de técnicas basadas en la
evolucion incluyen las Estrategias Evolutivas (EE) (Beyer & Schwefel, 2002; Hansen, 2023; T, 1991),
Algoritmos Genéticos (AG) (Tang et al., 1996), Differential Evolution (DE) (Storn & Price, 1997) y
Self-Adaptative Differential Evolution (JADE) (Zhang & Sanderson, 2007). Las técnicas inspiradas
en enjambres utilizan esquemas de comportamiento extraidos de la interaccion colaborativa de
diferentes animales o especies de insectos para producir una estrategia de busqueda.
Recientemente en la literatura se ha publicado un gran nimero de enfoques basados en enjambres.
Entre los enfoques inspirados en enjambres mas populares se encuentra el Algoritmo de Busqueda
de Cuervos (CSA) (Askarzadeh, 2016), Colonia Artificial de Abejas (ABC) (Karaboga et al., 2014),
Algoritmo de Optimizacion por Enjambre de Particulas (PSO) (Kennedy & Eberhart, 1995; Marini &
Walczak, 2015; Poli et al., 2007), Algoritmo de Luciérnagas (FA) (Yang, 2009), Cuckoo Search (CS)
(Yang & Deb, 2009), Bat Algorithm (BA) (Yang, 2010), Gray Wolf Optimizer (GWO) (Mirjalili et al.,
2014), Moth-flame optimization algorithm (MFO) (Mirjalili, 2015) por mencionar algunos. Los
algoritmos metaheuristicos que consideran un esquema basado en la fisica utilizan modelos fisicos
simplificados para producir patrones de busqueda para sus agentes. Algunos ejemplos de las
técnicas basadas en la fisica mas representativas incluyen el States of Matter Search (SMS) (Cuevas
et al., 2014; Valdivia-Gonzalez et al., 2017), Simulated Annealing (SA) algorithm (Kirkpatrick et al.,
1983; Rutenbar, 1989; Siddique & Adeli, 2016), Gravitational Search Algorithm (GSA) (Rashedi et
al., 2009), Water Cycle Algorithm (WCA) (Eskandar et al., 2012), Big Bang-Big Crunch (BB-BC) (Erol
& Eksin, 2006) y Electromagnetism-like Mechanism (EM) (Birbil & Fang, 2003). La Figura 1 muestra
visualmente la taxonomia de la clasificacion metaheuristica. Aunque todos estos enfoques
consideran fendmenos muy diferentes como metaforas, los patrones de busqueda utilizados para
explorar el espacio de busqueda se basan exclusivamente en elementos espirales o modelos de

C-3

atracciéon (Kennedy & Eberhart, 1995; Marini & Walczak, 2015; Mirjalili et al., 2014; Poli et al., 2007;
Yang, 2009, 2010). Bajo tales condiciones, el disefio de muchos métodos metaheuristicos se refiere
a la configuracion de un patrén de busqueda reciclado que ha demostrado ser exitoso en enfoques
anteriores para generar nuevos esquemas de optimizacién mediante una modificacion marginal.

l Evolutionary Strategies (ES) ’ ‘ Genetic Algorithms (GA)
Evolution-based
‘ Differential Evolution (DE) | l Self-Adaptative Differential Evolution (JADE)
[Artificial Bee Colony (ABC) | | Firefly Algorithm (FA) |
8
] e :
2 § l Cuckoo Search (CS) ‘ \ Particle Swarm Optimization (PSO)
§ 5 swarmbased |
fz"v' g ‘ Gray Wolf Optimizer (GWO) ‘ \ Crow Search Algorithm (CSA) l
l Moth-flame optimization algorithm (MFO)] Bat Algorithm (BA)
‘ Simulated Annealing (SA) ’ Gravitational Search Algorithm (GSA) ‘
Physics-based
] igB -Bi h (BB-B
‘ Water Cycle Algorithm (WCA) ‘ | Blg Bang:big Crangly (RB-6C) l
Electromagnetism-like Mechanism (EM)

Figura 1. Taxonomia visual de los esquemas metaheuristicos inspirados en la naturaleza.

Por otro lado, el orden de una ecuacion diferencial se refiere al grado mas alto de derivada
considerado en el modelo. Por lo tanto, un modelo cuya formulacién de entrada-salida es una
ecuacion diferencial de segundo orden se conoce como un sistema de segundo orden (Zill, 2012).
Uno de los elementos principales que hace que un modelo de segundo orden sea importante es su
capacidad para presentar comportamientos muy diferentes, dependiendo de la configuracién de sus
parametros. A través de sus distintos comportamientos, como oscilatorio, sub amortiguado o sobre
amortiguado, un sistema de segundo orden puede mostrar respuestas temporales distintas
(Haidekker, 2020). Estos comportamientos pueden observarse como trayectorias de busqueda
desde la perspectiva de los esquemas metaheuristicos. Por lo tanto, con sistemas de segundo orden,
es posible generar movimientos oscilatorios dentro de una regién determinada o construir patrones
de busqueda complejos alrededor de diferentes puntos o secciones del espacio de busqueda.

En este articulo, se introduce un conjunto de nuevos patrones de busqueda para explorar
eficientemente el espacio de busqueda. Estos patrones emulan la respuesta de un sistema de

segundo orden. El conjunto propuesto de patrones de busqueda se N@ integrado como una estrategia
completa de busqueda, llamada Algoritmo de Segundo Orden (SOA), para obtener la soluciéon global
de problemas de optimizacion complejos. Para analizar el rendimiento del esquema propuesto, se
ha comparado en un conjunto representativo de problemas de optimizaciéon, que incluyen
formulaciones multimodales, unimodales e hibridas. Los resultados competitivos demuestran los
resultados prometedores de los patrones de busqueda propuestos.

Las principales contribuciones de esta investigacion se pueden expresar de la siguiente manera:

1. Se introduce un nuevo algoritmo de optimizacién basado en la fisica, denominado

C-4

SOA. Utiliza patrones de busqueda obtenidos a partir de la respuesta de sistemas de
segundo orden.

2. Se proponen nuevos patrones de busqueda como alternativa a los conocidos en la
literatura.

3. Se evalla la significancia estadistica, la velocidad de convergencia y la proporcion
de explotacion-exploracion de SOA en comparacion con otros algoritmos metaheuristicos
populares.

4. SOA supera a otros algoritmos competidores en dos conjuntos de problemas de
optimizacion.

El resto de este documento esta estructurado de la siguiente manera: Se presenta una breve
introduccién de los sistemas de segundo orden en la seccién 2; en la seccion 3, se discuten los
patrones de busqueda mas importantes en los métodos metaheuristicos; en la seccion 4, se definen
los patrones de busqueda propuestos; en la seccidn 5, se describe la medicion de la exploracion-
explotacion; en la seccion 6, se introduce el esquema propuesto; en la seccion 7 se presentan los
resultados numéricos; en la seccion 8, se discuten las principales caracteristicas del enfoque
propuesto; en la seccion 9, finalmente, se extraen las conclusiones.

2, Sistemas de Segundo Orden

Un modelo cuya formulacion de entrada R(s) - salida C(s) es una funcion de transferencia de lazo
cerrado de segundo orden se conoce como un sistema de segundo orden. Uno de los elementos
principales que hace que un modelo de segundo orden sea importante es su capacidad para
presentar comportamientos muy diferentes segun la configuracion de sus pardmetros. Un modelo de
segundo orden genérico se puede formular bajo la siguiente expresion (Zill, 2012):

C(s) cuf1
R(s) :sz+26wns+w§l (1)

Donde C y wn representan la razén de amortiguamiento y wn la frecuencia natural, respectivamente,
mientras que s simboliza el dominio de Laplace.

El comportamiento dinamico de un sistema se evalla en términos de la respuesta temporal obtenida
mediante una sefial de paso unitario como entrada R(s). El comportamiento dinamico se define como
la forma en que el sistema reacciona, tratando de alcanzar el valor de uno a medida que evoluciona
el tiempo. El comportamiento dinamico del sistema de segundo orden se describe en términos de
y wn (Haidekker, 2020). Suponiendo tales parametros, el sistema de segundo orden presenta tres
comportamientos diferentes: Subamortiguado (0 < ¢ < 1), criticamente amortiguado ({ = 1), y sobre
amortiguado (¢ > 1).

21. Comportamiento Subamortiguado (0 <{<1)
En este comportamiento, los polos (raices del denominador) de la ecuacién (1) son complejos

C-5

conjugados y se encuentran en la mitad izquierda del plano s. Bajo tales condiciones, la respuesta
subamortiguada Cy(s) el sistema en el dominio de Laplace se puede caracterizar de la siguiente
manera:

wh
s(s+ {wy)? + a)rzl(l —(?))
Aplicando operaciones de fracciones parciales y la transformada inversa de Laplace, se obtiene la
respuesta temporal que describe el comportamiento subamortiguado C,(t) como se indica en la
ecuacion (3):

c (s) =

T o
cU(t)—l—\/l—_ZZ51n(wn\/1—Zz+tan (T)

Si ¢ =0, se presenta un caso especial en el cual la respuesta temporal del sistema es oscilatoria. La
salida de estos comportamientos se visualiza en la Figura 2 para los casos de (=0, =0.2,(=0.5
y ¢ =0.707. En el comportamiento subamortiguado, la respuesta del sistema comienza con una alta
aceleracion. Por lo tanto, la respuesta produce un sobrepaso que supera el valor de uno. El tamano
del sobrepaso depende inversamente del valor de .

2 T
¢=0

1.8

1.6

1.4

1.2+

1

Output

0.8
0.6

0.4

10 15
t

Figura 2. Respuestas temporales del sistema de segundo orden considerando sus diferentes comportamientos: Sub
amortiguado (0 < < 1), criticamente amortiguado (¢ = 1), y sobre amortiguado (¢ > 1).

2.2. Comportamiento criticamente amortiguado ({=1)

En el comportamiento criticamente amortiguado, los dos polos de la funcion de transferencia de la
ecuacion (1) presentan numeros reales con el mismo valor. Por lo tanto, la respuesta del sistema
criticamente amortiguado C¢(s) en el dominio de Laplace puede ser descrita como:

C (s)= L
¢ s(s + wp)? 4)

Aplicando la transformada inversa de Laplace a (4), la respuesta temporal al comportamiento
criticamente amortiguado C«(s) es representado por el modelo:

ce(t) =1 — e—ont(1 + wyt) (5)
En este tipo de comportamiento, la respuesta del sistema presenta un patron similar a lo sistemas
de primer orden. El cual, alcanza el valor de uno sin experimentar ningin excedente. La salida de
este sistema esta representado visualmente en la Figura 2.

2.3. Comportamiento Sobreamortiguado (> 1)
En este caso, los polos de la funcion de transferencia son numeros reales con con diferente valor.
La respusta de Cy(s) en el dominio de Laplace es modelada como se indica en (6)

A
C (s) = @
’ s(s+{wn+ wnViZ—1)(s +{wn— wnV{Z—1) (6)

Por su parte, la ecuacion (7) representa la respuesta temporal del sistema sobreamortiguado tras
aplicar la transformada inversa de Laplace a (6)

En un comportamiento sobreamortiguado, el sistema reacciona lentamente hasta alcanzar el valor
de uno. La desaceleracion de la respuesta depende de ¢, donde un mayor valor representa una
repuesta mas lenta. La respuesta de este comportamiento e representada en la figura 2 con un valor
de {(=1.67.

3. Patrones de busqueda en Metaheuristicos

Un patrén de busqueda es un conjunto de movimientos producidos por una regla o modelo con el fin
de examinar soluciones prometedoras en el espacio de bisqueda. La generacién de patrones de
bdsqueda eficientes para la correcta exploracion del valor 6ptimo dentro del espacio de busqueda
puede ser complicada, especialmente cuando existen multiples éptimos locales. Recientemente,
varios esquemas metaheuristicos han sido introducidos en la literatura. Aunque todos estos
enfoques consideran fendmenos muy diferentes como metaforas, los patrones de busqueda
utilizados para explorar el espacio de busqueda son muy similares.

La exploracion y la explotacion corresponden a las caracteristicas mas importantes de un patrén de
busqueda. La exploracion se refiere a la capacidad de un patrén de busqueda para examinar un
conjunto de soluciones distribuidas en areas distintas del espacio de busqueda. Por otro lado, la
explotacion representa la capacidad del patrén de busqueda para mejorar la precision y calidad de
las soluciones existentes evaluando la localidad de dichas soluciones. La combinacion de ambos
mecanismos en un patron de busqueda es crucial para lograr el éxito al resolver un problema de
optimizacion particular.

Los problemas de optimizacion, desde la perspectiva Metaheuristica, inicializan una poblacion
Pk({xk xk}) de N soluciones candidatas (individuos) que evolucionan tras cada generacion,

desde un punto inicial k =1, hasta un numero determinado k = Maxgen. Cada individuo

C-7

xk(i € [1,...,N]) perteneciente a la poblacion, corresponde a un elemento dimensional-d
{xk, ...,xkd}, el cual simboliza las variables de decision involucradas en el problema de optimizacion.
i1 i,

En cada generacion, el patron de busqueda actiia sobre cada individuo de la poblacion Pk, para

producir una nueva poblacion Pk+1, La calidad de cada individuo x* se evalua en con respecto a la
funcién objetivo J(x*), cuyo valor representa que tan apta es la solucién x*. Conforme evoluciona el
1 :

L
proceso metaheuristico, se conservan los mejores individuos b {b1, ... , b;}, dado que estos
representan las mejores soluciones encontradas hasta el momento.

En general, los patrones de busqueda actuan sobre cada individuo x}, usando como referencia los
mejores elementos almacenados en b. Posteriormente, y, dependiendo del modelo metaheuristico
empleado, un conjunto de reglas de movimiento modifica la posicion de x¥ hasta que la posicion b
ha sido alcanzada. La idea detras de este mecanismo es examinar las soluciones que se encuentran
en la trayectoria de xk a b, con el objetivo de encontrar mejores soluciones que las pertenecientes a
al actual valor de b. Los patrones de busqueda para generar las trayectorias de x* a b difieren del
modelo empleado.

Dos de los modelos de busqueda mas populares son las trayectorias de “atraccion” y “espiral”’. Los
modelos de atraccion generan movimientos de atraccion xf a b. Los modelos de atraccion son
empleados ampliamente por una extensa cantidad de métodos metaheuristicos tales como PSO
(Kennedy & Eberhart, 1995; Marini & Walczak, 2015; Poli et al., 2007), FA (Yang, 2009), CS (Yang
& Deb, 2009), BA (Yang, 2010), GSA (Rashedi et al., 2009), EM (Birbil & Fang, 2003), y DE (Storn
& Price, 1997). Por su parte, los modelos de espiral producen una trayectoria en espiral alrededor
de las mejores soluciones pertenecientes a b. Algunos de los modelos que emplean una trayectoria
en espiral son WOA y GWO. La Figura 3, muestra las trayectorias que se generan con los modelos
de atraccién y de espiral.

O
e
b / , b 3 \
Q x:‘
O
O
0O
o
x{
(a) (b)
Figura 3. Trayectorias producidas por a) atraccion, y b) espiral.
4, Patrén de busqueda propuesto

En este articulo, se presentan un conjunto de nuevos patrones de bisqueda para explorar el espacio
de busqueda de manera eficiente. Estos patrones emulan la respuesta de un sistema de segundo

C-8

orden. El conjunto de patrones de busqueda propuesto se emplea como una estrategia de busqueda
completa con la finalidad de obtener la solucién global de problemas de optimizacion complejos.
Dado que el esquema propuesto se basa en la respuesta de sistemas de segundo orden, puede
considerarse como un algoritmo basado en la fisica. En este enfoque, la respuesta temporal del

sistema de segundo orden se utiliza para generar la trayectoria desde la posicion de xk =
{xk xkd} hasta b {b4, ..., bq}. Con el uso de estos modelos, es posible generar trayectorias mas

complejas que permiten una mejor evaluacion del espacio de busqueda. Ante tales condiciones, se
consideran las tres respuestas de un sistema de segundo orden para producir patrones de busqueda
distintos. Estos son el subamortiguado, criticamente amortiguado y sobreamortiguado, modelados
por las expresiones:

V1i-¢2
xk = 1 —L sinlw,V1 — ¢2 + tan—1 1756 (b i~ x) ®)
ho Vi-¢ h M
x;fj = (1 — e_“mt(l + (i)nt))(b] - X?']_) (9)
= e T ey (10)

Donde i(e [1, N]) corresponden a los agentes de busqueda, mientras que j(€ [1, N]) simboliza las
variables de decision o dimension del problema. Dado que el comportamiento de cada patrén de
busqueda depende del valor de (, es facil combinar elementos para producir trayectorias
interesantes. En la Figura 4 se muestran algunos ejemplos de trayectorias producidas por diferentes
valores de (.

(9 (d)
Figura 4. Algunos ejemplos de las trayectorias producidas usando diferentes valores de ¢, a) xk e 7 =0, yxk «7=1Db)
i1
x’< < (=01, yxk « (=05, c)xk «(=1, yxk « (=167, d)xk «(=0.5 yxk «(=1

C-9

En dicha Figura, se asume un caso de dos dimensiones (d=2), donde la posicion inicial de xk es (0.5,
0.5), y la posicion final o mejor posicion es (1,1). La Figura 4a, muestra el escenario de x%,« { =0
yxk2 « ¢ = 1. Por su parte, la Figura 4b muestra el caso de xk « (=01, yxk «7=0. 5 Mlentras
que la Figura 4c presenta el caso xk «{=1yxk 2(— (=1 67 Flnalmente la Flgura 4d muestra el

escenario xk « {=05yxk « (= 1 De estas flguras se puede apreciar que las respuestas de
i1 i,2

segundo orden pueden producir una gran cantidad de trayectorias complejas, que incluye a gran
parte de otros patrones de busqueda encontrados en la literatura. En todos estos casos (a)-(d), el
valor asignad a wn ha sido 1.

5. Equilibrio entre exploracién y explotacion

Los métodos metaheuristicos emplean un conjunto de agentes de busqueda para examinar el
espacio de busqueda con el objetivo de identificar una solucion satisfactoria para una formulacion
de optimizacion. En los esquemas metaheuristicos, los agentes de busqueda que presentan los
mejores valores de fitness tienden a regular el proceso de busqueda, produciendo una atraccion
hacia ellos. En estas condiciones, a medida que evoluciona el proceso de optimizacion, la distancia
entre los individuos disminuye, al tiempo que se acentla el efecto de explotacién. Por otro lado,
cuando la distancia entre individuos aumenta, las caracteristicas del proceso de exploracién son mas
evidentes.

Para calcular la distancia relativa entre los individuos (aumento y disminucion), se utiliza un indicador
de diversidad conocido como indice de diversidad dimensional (Morales-Castafieda et al., 2020).
Segun este enfoque, la diversidad se formula de la siguiente manera:

N d
1 1
Div; = =Y |median(x) — x;;|Div = =" Div; 11
ITN J d j
i=1 j=1

donde median(x/) simboliza la mediana de la dimensién j de todos los agentes de busqueda. x;, j
representa la decision variable j del individuo i. N es el nimero de individuos en la poblacién Pk
mientras que d corresponde al niumero de dimensiones de la formulacion de optimizacion. La
diversidad Div; (de la j-ésima dimension) evalua la distancia relativa entre la variable j de cada
individuo y su valor mediano. La diversidad completa Div (de toda la poblacion) corresponde a la
diversidad promedio en cada dimension. Ambos elementos Div; y Div se calculan en cada iteracion.

Habiendo evaluado los valores de diversidad, el nivel de exploracion y explotacién se puede calcular
como el porcentaje del tiempo que una estrategia de busqueda invierte explorando o explotando en
términos de sus valores de diversidad. Estos porcentajes se calculan en cada iteracion mediante los
siguientes modelos,

Di Div — Di
XLP% = (=) x 100XPT% = (* Wnasl) 100 (12)
Wmax Dlvmax

Donde Div,,,, simboliza el valor maximo de diversidad obtenido durante el proceso de optimizacion.
El porcentaje de exploracion XPL% corresponde al tamafo de la exploracién como la tasa entre Div
y Div,,q,. Por otro lado, el porcentaje de explotacion XPT% simboliza el nivel de explotacién. XPT%

C-10

se calcula como el porcentaje complementario a XPL% ya que la diferencia entre Divy,,, y Div se
genera debido a la concentracion de individuos.

6. Algoritmo metaheuristico propuesto

El conjunto de patrones de busqueda basados en los sistemas de segundo orden se ha integrado
como una estrategia de busqueda completa para obtener la solucién global de problemas complejos
de optimizacion. En esta seccion se describe el método metaheuristico completo, llamado Algoritmo
de Segundo Orden (SOA).

El esquema considera cuatro etapas diferentes: (A) Inicializacion, (B) generacion de trayectoria, (C)
reinicio de elementos defectuosos y (D) evitar mecanismo de convergencia prematura. Los pasos
(B)—(D) se ejecutan secuencialmente hasta que se alcanza un criterio de parada. La Figura 5 muestra
el diagrama de flujo del método metaheuristico completo.

Initialization xf‘and g;
|

¥
Trajectory generation xf‘“

Good
Bad

No

k < Maxgen

Reset xf‘

e

Yes

Yes XPL% <5% No

Figura 5. Diagrama de flujo del método metaheuristico propuesto basado en la respuesta de sistemas de segundo orden.

6.1. Inicializacion

En la primera iteracion k = 0, se produce aleatoriamente una poblaciéon P° de N agentes
{x0, .-, x(;v} considerando la siguiente ecuacion:
1

0 — d - (bhigh — plow blow =12 ... Noj=1--.d
xi'j ran (]_g j)+ f 2,0, N; j FETE (13)

Donde bhish y blowson los limites de la variable de decisionj y rand es un nimero aleatorio
J J
distribuido uniformemente entre [0,1].

A cada individuo x; de la poblacion se le asigna un vector {; = {{;1, -*-, {;q } cuyos elementos {;;
determinan el comportamiento de la trayectoria de cada j-ésima dimensién. Inicialmente, cada
elemento {;; se establece en un valor aleatorio entre [0,2]. Bajo este intervalo, todos los
comportamientos de segundo orden son posibles: subamortiguado (0 < ¢ < 1), criticamente
amortiguado ({ = 1) y sobreamortiguado (¢ > 1).

6.2. Generacion de Trayectoria
Una vez inicializada la poblacion, se obtiene el mejor elemento de la poblacidén b. Luego, la nueva
posicién xf+1 de cada agente xki se calcula como una trayectoria generada por un sistema de
segundo orden. Una vez determinadas todas las nuevas posiciones en la poblacion Pk, también se
define el mejor elemento b.

6.3. Restablecimiento de Elementos Defectuosos
A cada agente x¥ se le permite moverse en su propia trayectoria durante diez iteraciones. Después
de diez iteraciones, si el agente de busqueda x¥ mantiene el peor desempefio en términos de la
funcion de aptitud, se reinicializa tanto en la posicién como en su vector ;. En tales condiciones, el

agente de busqueda estara en otra posicion y con la capacidad de realizar otro tipo de
comportamiento de trayectoria.

6.4. Evadir el Mecanismo de Convergencia Prematura
Si el porcentaje de exploracion XPL% es inferior al 5%, el mejor valor b se reemplaza por el mejor
valor virtual b,. El elemento b, se calcula como el valor promedio de los cinco mejores individuos
de la poblacion. La idea detras de este mecanismo es identificar una nueva posicién para generar
diferentes trayectorias que eviten que el proceso de busqueda quede atrapado en un 6ptimo local.

7. Resultados experimentales

Para evaluar los resultados del algoritmo SOA propuesto, se ha llevado a cabo un conjunto de
experimentos. Dichos resultados se han comparado con los obtenidos por la Colonia Atrtificial de
Abejas (ABC) (Karaboga et al., 2014), la Estrategia de Evolucién de Adaptaciéon de la Matriz de
Covarianza (CMAES) (Hansen, 2023), el Algoritmo de Busqueda de Cuervos (CSA) (Askarzadeh,
2016), la Evolucioén Diferencial (DE) (Storn & Price, 1997), el Algoritmo de Optimizacién de Polilla
(MFO) (Mirjalili, 2015) y la Optimizacion de Enjambre de Particulas (PSO) (Kennedy & Eberhart,
1995), que se consideran los esquemas metaheuristicos mas populares en muchos estudios de
optimizacién (Boussaid et al., 2013). Para la comparacion, todos los métodos se han configurado de
acuerdo con sus parametros publicados.

En nuestro andlisis, el tamafio de la poblacién N se ha fijado en 50 agentes de busqueda. El nimero
maximo de iteraciones (Maxgen) para todas las funciones se ha fijado en 1000. Este criterio de
parada se ha decidido para mantener la compatibilidad con trabajos similares publicados en la
literatura (Han et al., 2014; Meng & Pan, 2016). Para evaluar los resultados, se consideran tres

C-12

indicadores diferentes: La media de las mejores soluciones hasta el momento (AB), la mediana de
las mejores soluciones hasta el momento (MB) y la desviacion estandar (SD) de las mejores
soluciones hasta el momento. En el analisis, cada problema de optimizacion se resuelve 30 veces
con cada algoritmo, por lo tanto se obtienen 30 resultados. A partir de todos estos valores, el valor
medio de todas las mejores soluciones encontradas representa la solucion media Best-so-far (AB).

Asimismo, se calcula la mediana de los 30 resultados para generar MB y se estima la desviacion
estandar de los 30 datos para obtener SD de las mejores soluciones hasta el momento. Los
indicadores AB y MB corresponden a la precision de las soluciones, mientras que SD a su dispersion
y, por tanto, a la robustez del algoritmo.

7.1 Funciones multimodales

En esta subseccion, el enfoque SOA se evalla considerando 12 funciones unimodales (f1(x)-f12(x))
detalladas en la Tabla 1 del Apéndice A. Este tipo de funciones presentan superficies de optimizacion
que implican mudltiples o6ptimos locales. Por esta razén, estas funciones presentan mas
complicaciones en su soluciéon. En este analisis, se examina el rendimiento del método SOA en
comparacion con ABC, CMAES, CSA, DE, MFO y PSO en términos de las funciones multimodales.
Los experimentos se llevan acabo con funciones objetivo que operan en 30 dimensiones (d = 30).

ABC DE CMAES CSA PSO MFO SOA
AB 8.9132622 0.7932535 2.8976 x 1019 55.918504 0.2012803 27.983271 0.1119774
fi(x) MD 8.4392750 0.7993166 24779 x 107 1° 57.038263 41459 x 1073 25365199 1.0714 x 10-10
SD 2.6748059 0.1378538 15343 x 107" 6.2032578 1.1022968 12.283254 0.2272439
AB 2 2 2 1,897,783.3 27.4 2 2
f(x) MD 2 2 2 35,691.155 2 2 2
SD 99512 x 10712 0 0 9,636,632.1 113.43495 0 0
AB 2 2 2 3,620,834.4 34723128 2 2
fo(x) MD) 2) 676,981.46 9 2 2
SD 23308 x 107! 0 0 7,265,352.7 113.36672 0 0
AB 0.1371551 0.002 1.7942 x 106 0.0862919 22285 x 1078 55194 x 10710 1.164 x 1071
fi(x) MD 0.1349076 0.01 0 0.0892256 0 0 7.7118 x 10712
SD 0.0399861 0.123 54833 x 107° 0.0213332 12206 x 1077 3.0231 x 107° 1.0995 x 107"
AB 13,781,291 1,331,987.7 22,307.195 44,274,761 82.539625 85.756149 71.964984
fs(x) MD 13,876,263 1,365,502.1 72377516 46,153,728 81.698488 85.665615 72.362277
SD 3,237,147.7 306,385.34 50,923.637 10,118,180 7.1916726 3.2857088 0.9929591
AB 1.152 x 10%° 5.850 x 10% 1.812 x 10% 6.429 x 109 1.397 x 108! 3.0883 x 10%! 1.0051 x 108
fe(x) MD 4622 x 10% 3.405 x 10% 7.928 x 100 2939 x 108 5.977 x 10% 7.9607 x 10% 4901 x 10%°
SD 1.685 x 10% 7.33 x 10 3.047 x 108 7.551 x 10% 2.197 x 108 5.6651 x 108 1.9457 x 105!
AB 30.033333 30 30 58.766666 30 33.633333 30
f(x) MD 30 30 30 59 30 30 30
SD 0.18257419 0 0 1.77498583 0 5.4550409]
AB 92 8.0666666 1.0666666 19,543.266 0.0333333 2000.0333 0
fs(x) MD 9 8 0 19,797 0 0 0
SD 2.5784250 1.9464084 3.1941037 2077.7459 0.1825741 48423277 0
AB ~745.05202 ~1125.4815 ~1127.8626 ~725.09353 ~1071.7869 ~1031.2617 ~1146.3478
fo(x) MD -743.4462 ~1174.9722 ~1132.5748 ~719.10777 ~1068.9596 ~1033.6178 ~1145.2467
SD 25.137593 78.706 25.809999 25.815652 34055847 34.244188 10.928362
AB 110,282.54 b65,2/5.86 —4Y30 1,1/70,939.0 45,556.260 222833.73 —5U1.79356
fo(x) MD 96,461.061 673,449 49 ~4930 1,126,2342 5076.8152 71,582.051 ~332.82466
SD 44,933.417 129,147.27 37318 x 107° 159,175.64 75,990.880 305,159.37 663.92006
AB -18.26109 ~26.056561 -29.6576 ~16.504756 ~28.367666 ~28.863589 ~30
fulx) MD ~18.131984 ~26.092349 -29.9286 ~16.183447 ~28.14029 ~29.070145 -30
SD 1.6366873 0.5428906 0.466 1.16917142 1.5408536 1.2837415 0
AB 1502.3129 369.60375 786.36819 519.17242 196.95838 261.52332 11.905761
fiz(x) MD 1457.6865 368.82916 778.72369 465.93238 213.00730 252.76747 0.3841574
SD 420.70611 35.389136 215.93893 228.69860 86.542862 106.52353 29.544101

Tabla 1. Resultados de minimizacién de funciones de referencia multimodales.

C-13

En la Tabla 1 se muestran los mejores resultados promediados (AB) considerando 30 experimentos
independientes. También se presentan los valores medios (DM) y las desviaciones estandar (DE).

En la Tabla 1 se observa que el esquema SOA propuesto obtiene un mejor rendimiento que los
algoritmos ABC, CMAES, CSA, DE, MFO y PSO en las funciones f1(x), f4(x), f5(x), f6(x), f8(x), fo(x),
f10(x), f11(x) y f12(x). Sin embargo, los resultados de SOA son similares a los obtenidos por DE,
CMAES y MFO en las funciones f2(x), f3(x) y f7(x).

8. Conclusiones

Un patrén de busqueda es un conjunto de movimientos producidos por una regla o modelo, con el
fin de examinar soluciones prometedoras del espacio de busqueda. En este articulo, se introduce un
conjunto de nuevos patrones de busqueda para explorar el espacio de busqueda de forma eficiente.
Emulan la respuesta de un sistema de segundo orden. En estas condiciones, se consideran tres
respuestas diferentes de un sistema de segundo orden para producir tres patrones de busqueda
distintos, como subamortiguado, criticamente amortiguado y sobreamortiguado. Estos conjuntos de
patrones de busqueda propuestos se han integrado como una estrategia de busqueda completa,
denominada Algoritmo de Segundo Orden (SOA), para obtener la solucion global de problemas de
optimizacién complejos.

La forma de los patrones de busqueda permite equilibrar las capacidades de exploracion y
explotacion atravesando eficientemente el espacio de busqueda y evitando las regiones suboéptimas.
La eficacia de la SOA propuesta se ha evaluado mediante 20 funciones de referencia estandar. Los
resultados demuestran la eficacia de los patrones de busqueda generados en las probleméticas mas
complejas.

Para comparar el rendimiento del esquema SOA, también se han probado en el mismo entorno
experimental muchas otras técnicas de optimizacion populares, como la colonia de abejas artificial
(ABC), la estrategia de evolucion de adaptacion de la matriz de covarianza (CMAES), el algoritmo
de busqueda de cuervos (CSA), la evolucion diferencial (DE), el algoritmo de optimizacion de llama
de polila (MFO) y la optimizacion de enjambre de particulas (PSO). Las futuras lineas de
investigacion incluyen temas como las capacidades multiobjetivo, la incorporacion de mapas
cadticos y la inclusion de procesos de aceleracion para resolver otros problemas de optimizacion a
escala real.

10. Referencias
Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering

optimization problems: Crow search algorithm. Computers & Structures, 169, 1-12.
https://doi.org/10.1016/j.compstruc.2016.03.001

Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies — A comprehensive introduction. Natural
Computing, 1(1), 3-52. https://doi.org/10.1023/A:1015059928466

Birbil, S. i., & Fang, S.-C. (2003). An Electromagnetism-like Mechanism for Global Optimization.
Journal of Global Optimization, 25(3), 263—282. https://doi.org/10.1023/A:1022452626305

C-14

Boussaid, |., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information
Sciences, 237, 82-117. https://doi.org/10.1016/j.ins.2013.02.041

Cuevas, E., Echavarria, A., & Ramirez-Ortegdn, M. A. (2014). An optimization algorithm inspired by
the States of Matter that improves the balance between exploration and exploitation. Applied
Intelligence, 40(2), 256-272. https://doi.org/10.1007/s10489-013-0458-0

Cuevas, E., Galvez, J., Avila, K., Toski, M., & Rafe, V. (2020). A new metaheuristic approach based
on agent systems principles. Journal of Computational Science, 47, 101244,
https://doi.org/10.1016/j.jocs.2020.101244

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang—Big Crunch. Advances in
Engineering Software, 37(2), 106—111. https://doi.org/10.1016/j.advengsoft.2005.04.005

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm — A novel
metaheuristic optimization method for solving constrained engineering optimization problems.
Computers & Structures, 110-111, 151-166. https://doi.org/10.1016/j.compstruc.2012.07.010
Haidekker, M. A. (2020). Linear Feedback Controls: The Essentials. Elsevier.

Han, M., Liu, C., & Xing, J. (2014). An evolutionary membrane algorithm for global numerical
optimization problems. Information Sciences, 276, 219-241.
https://doi.org/10.1016/j.ins.2014.02.057

Hansen, N. (2023). The CMA Evolution Strategy: A Tutorial (arXiv:1604.00772). arXiv.
https://doi.org/10.48550/arXiv.1604.00772

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Atrtificial
bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57.
https://doi.org/10.1007/s10462-012-9328-0

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’'95 -
International Conference on Neural Networks, 4, 1942-1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science,
220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671

Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and
Intelligent Laboratory Systems, 149, 153—-165. https://doi.org/10.1016/j.chemolab.2015.08.020
Meng, Z., & Pan, J.-S. (2016). Monkey King Evolution: A new memetic evolutionary algorithm and its
application in vehicle fuel consumption optimization. Knowledge-Based Systems, 97, 144-157.
https://doi.org/10.1016/j.knosys.2016.01.009

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.

C-15

Knowledge-Based Systems, 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering
Software, 69, 46—61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Morales-Castafeda, B., Zaldivar, D., Cuevas, E., Fausto, F., & Rodriguez, A. (2020). A better balance
in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation, 54, 100671.
https://doi.org/10.1016/j.swevo.2020.100671

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1),
33-57. https://doi.org/10.1007/s11721-007-0002-0

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm.
Information Sciences, 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004

Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE Circuits and Devices
Magazine, 5(1), 19-26. https://doi.org/10.1109/101.17235

Siddique, N., & Adeli, H. (2016). Simulated Annealing, Its Variants and Engineering Applications.
International Journal on Atrtificial Intelligence Tools, 25(06), 1630001.
https://doi.org/10.1142/S0218213016300015

Storn, R., & Price, K. (1997). Differential Evolution — A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341-359.
https://doi.org/10.1023/A:1008202821328

T, B. (1991). A Survey of Evolution Strategies. Proc. of Fourth Internal. Conf. on Genetic Algorithms.
https://cir.nii.ac.jp/crid/1573950398979648512

Tang, K. S., Man, K. F., Kwong, S., & He, Q. (1996). Genetic algorithms and their applications. IEEE
Signal Processing Magazine, 13(6), 22-37. https://doi.org/10.1109/79.543973

Valdivia-Gonzalez, A., Zaldivar, D., Fausto, F., Camarena, O., Cuevas, E., & Perez-Cisneros, M.
(2017). A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power
Allocation in Plug-in Hybrid Electric Vehicles. Energies, 10(1), Article 1.
https://doi.org/10.3390/en10010092

Yang, X.-S. (2009). Firefly Algorithms for Multimodal Optimization. In O. Watanabe & T. Zeugmann
(Eds.), Stochastic Algorithms: Foundations and Applications (pp. 169-178). Springer.
https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. R. Gonzalez, D. A. Pelta, C.
Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010) (pp. 65—74). Springer. https://doi.org/10.1007/978-3-642-12538-6_6

Yang, X.-S., & Deb, S. (2009). Cuckoo Search via Lévy flights. 2009 World Congress on Nature &

C-16

Biologically Inspired Computing (NaBIC), 210-214. https://doi.org/10.1109/NABIC.2009.5393690

Zhang, J., & Sanderson, A. C. (2007). JADE: Self-adaptive differential evolution with fast and reliable
convergence performance. 2007 IEEE Congress on Evolutionary Computation, 2251-2258.
https://doi.org/10.1109/CEC.2007.4424751

Zill, D. G. (2012). A First Course in Differential Equations with Modeling Applications. Cengage

Learning.

Esta obra esta bajo una licencia de Creative Commons
Reconocimiento-NoComercial-Compartirigual 2.5 Meéxico.

C-17

Funciones, un algoritmo, BigQuery y la ausencia de
frameworks

Functions, an algorithm, BigQuery, and the absence of
frameworks

Pedro Cano'
pedroc777@gmail.com

Resumen: En este articulo vamos explicar como solucionar el siguiente problema: realizar una inserciéon de datos en una
tabla de BigQuery usando el lenguaje de programacién Python, cuando no podemos usar frameworks, chatGPT, GitHub
Copilot, etc., para obtener una solucion.

La solucién se centra en desarrollar una serie de funciones que nos permitan validar los tipos de datos de los
campos de la tabla involucrados en la insercién, ordenar los datos a insertar y darles la estructura requerida segun los tipos
de datos presentes. Para esto, también mostramos el desarrollo de un algoritmo centrado en realizar dichos procesos.

Palabras clave: datos, campos, funciones, algoritmo, Python, BigQuery, SQL.

Abstract: In this article, we are going to explain how to solve the following problem: perform a data insertion in a BigQuery
table using the Python programming language, when we cannot use frameworks, chatGPT, GitHub Copilot, etc., to obtain a
solution.

The solution focuses on developing a series of functions that allow us to validate the data types of the table fields
involved in the insertion, order the data to be inserted and give them the required structure according to the data types
present. For this, we also show the development of an algorithm focused on performing such processes.

Keywords: data, fields, functions, algorithm, Python, BigQuery, SQL.

" Universidad Abierta y a Distancia de México

Introduccién

En este escrito pretendemos mostrar cdmo se hace la inserciéon de datos en una tabla de BigQuery usando el lenguaje de
programacion Python. Esto es algo se ha realizado cientos de veces (y se seguira haciendo) en la industria, pero la
peculiaridad en este caso es que la explicacion mostrada toma como base una hipotética aplicaciéon en la que no pueden
usarse frameworks, recursos como chatGPT o GitHub Copilot, bibliotecas que nos permitan realizar esta accion y
recepcion de datos de manera convencional (la razén es que en este contexto, dichas herramientas no tienen la solucién
para nuestro problema, no estan integradas como tal o no se cuenta con los recursos para acceder a ellas). Lo Unico que
recibe esta aplicacion es una cadena de texto que nosotros debemos manipular para lograr nuestro objetivo.

Ahora bien, para poder desarrollar este escrito, primero explicamos a detalle el problema, es decir, damos un
contexto del problema planteado arriba. Posteriormente mencionamos algunas cuestiones relacionadas con la funcién que
realiza la insercion en BigQuery y pasamos a dar cuenta de la solucién planteada, la cual se compone de una serie de
funciones programadas en Python que permiten obtener las estructuras deseadas por BigQuery/SQL.

La descripcién de esta solucidon se compone de varias partes. La primera de ellas es una funcién cuya mision es
validar los tipos de datos de los campos involucrados en la insercién mencionada (para saber si son STRING, INTEGER,
BOOLEAN, etc.). Posteriormente, se explica cdmo esta funcién se usa para ejecutar cualquiera de las siguientes dos
opciones: 1) la funcion que ordena los valores a insertar cuando todos los campos de la insercién son de tipo STRING; 2)
la funcién que ordena los valores cuando uno o varios de estos no son de tipo STRING.

Esta ultima funcidon es un tanto mas extensa, pues conlleva el desarrollo de un algoritmo que llamamos busqueda
por saltos, el cual, con la ayuda de listas, contadores y ciclos for, nos ayuda a ordenar y dar formato a los datos
involucrados en cada insercion. Por este motivo, la explicaciéon de esta funcién implica también la descripcion del algoritmo
en abstracto, el algoritmo en el codigo y un ejemplo de cdmo se ejecuta cada iteracion del mismo. Una vez que se terminan
estas explicaciones, también se termina el escrito, pues después de estos ordenamientos sélo resta ejecutar la insercion
que nos permite realizar la insercion.

La dltima cuestion que debemos aclarar antes de empezar a desarrollar nuestros objetivos, es BigQuery.

Esta (Google, 2023) es una herramienta desarrollada por Google basada en una arquitectura sin servidor que permite
almacenar grandes cantidades de informacién en la nube y que usa SQL para realizar varias de las operaciones
pertenecientes a una base de datos tradicional, como consultas, inserciones, actualizaciones, procedimientos
almacenados y demas. En este aspecto, junto con el desarrollo del algoritmo mencionado y en el hecho de no poder usar
herramientas que faciliten la solucién mencionada, recae la importancia del escrito, pues por un lado usamos una
herramienta que se encuentra en auge (por el incremento del computo en la nube), y por otro nos ponemos en un
escenario en el que, por ciertos motivos, nos vemos imposibilitados para usar las herramientas mencionadas.

Explicacién del problema
Supongamos un escenario: necesitamos insertar informacién en un proyecto de BigQuery (Jenn, 2022/) (de ahora en
adelante abreviado como BQ) y necesitamos que dicha informacion se obtenga a partir de una interfaz grafica de usuario.
Dicho de otro modo: necesitamos que una tabla de BQ se alimente de la informacién que un usuario le proporciona a
través de una aplicacion movil o de escritorio mediante la escritura de los datos. Suena de lo mas comun, pero la
particularidad de este escenario es que dicha aplicaciéon solo recibe datos mediante cadenas de texto, esto es, Unicamente
recibe expresiones del tipo “dato1, datoz, datos, ..., dato,” i Por qué?
Porque en este caso atipico no podemos usar frameworks u otras herramientas (como chatGPT o GitHub
Copilot) que nos faciliten esta misién, también debemos suponer el frontend que manejamos en este escenario no nos
permite recibir datos de tipo INTEGER, STRING, BOOLEAN o cualquier otro tipo de dato aceptado por BQ, porque no
cuenta con las herramientas de desarrollo para ello. La razén para esto puede deberse a que nuestra aplicacion se
desarrolla en un entorno muy nuevo que no cuenta con integraciones de las herramientas mencionadas, falta presupuesto
para pagar por alguna de ellas y demas; lo importante es que solo puede recibir cadenas de texto y con ellas debemos
realizar las inserciones.

Ahora bien, esto es un problema porque las sentencias de insercion en SQL (que es el lenguaje de programacién
usado por BQ) tienen dos requerimientos que entran en conflicto con el hecho de que nuestra aplicacién hipotética sélo
trabaje con cadenas de texto. El primero de ellos es la estructura o el orden que deben tener los datos para ser insertados:

C-2

def

INSERT INTO producto (productoNombre, productoDesc, productoPrecio, tPid, tiendald) wvalues
("iPhone XL","iPhone de ultima generacidén",20000.00, 2, 1), ("MOTO G","Almacenamiento: 16 Gb, SO:
Android",10000.00, 1, 2),

("RM","Teléfono pequefio y resitente",20000.00, 4, 3),

("ZTE", "Almacenamiento: 4GB, SO: Android",6000.00, 3, 4),

("Nokia 5120","Teléfono austero",500.00, 2, 5),

("GALAXY Z Omega","Almacenamiento: 64 Gb, SO: Android",50000.00, 5, 5),

("iPhone 5", "Almacenamiento: 60 gb, SO: iOS",6000.00, 1, 4),

("BlackBerry 7230","Almacenamiento: 4 Gb, SO: RM",1000.00, 2, 3),

("Xiaomi Redmi Note 8","Almacenamiento: 64 Gb, SO: Android 11 MIUI 12.5",30000.00, 5, 3),
("Huawei Nova 9", "Almacenamiento: 64 Gb, SO: EMUI 12 ",12999.00, 3, 2),

("BlackBerry 210", "Almacenamiento: 32 Gb, SO: BlackBerry 10",15000.00, 4, 1);

Fi

igura 1. Sentencia de insercion de SQL.

Como podemos observar, los datos estan dispuestos en forma de filas y cada fila tiene un nimero de elementos
que coincide con el numero de campos en los que se quiere hacer la insercion. Si la aplicacion recibe una cadena de texto
en una unica fila que no tiene saltos de linea y que tampoco cuenta con una especie de delimitador que indique dénde
termina una fila de datos y empieza la siguiente (que es el caso en nuestro escenario), entonces vamos a recibir un error
cuando intentemos hacer la insercion.

Por otra parte, en este ejemplo podemos observar que algunos datos que no son de tipo STRING, tienen que ser
escritos en la sentencia sin los caracteres “” 0 ,,“. En una cadena de texto del tipo
“datoq,dato,, datos, ..., dato,”, al ser de tipo STRING, no es posible determinar si dato dato, es de tipo INTEGER o si datos
es BOOLEAN. Para BQ todo esto va a llegar como STRING, y cuando intente introducirlo en un campo que no es de ese
tipo, se va a generar un error.

Por estos motivos, en los siguientes apartados explicaremos como resolver estos problemas mediante funciones
desarrolladas en Pythoni. Sin embargo, antes de explicar la solucién debemos aclarar que existen dos casos que se
relacionan con los requerimientos mencionados anteriormente: 1) la cadena de texto contiene datos que se van a insertar
en campos cuyo tipo de dato es Unicamente STRING; 2) la cadena de texto contiene datos que se van a insertar en
campos en los que el tipo de dato de alguno de ellos es diferente de STRINGIi. En el caso 1) Unicamente se debe generar
la estructura requerida por la insercion explicada arriba, es decir, se deben escribir los paréntesis, comas y “” 0 ,* que
delimitan a los datos de tipo STRING, asi como sus respectivos saltos de linea. En el caso 2), también debe realizarse
dicho procedimiento de escritura, pero deben omitirse “” o
. donde el tipo de dato no sea STRING. Dicho esto, es momento de explicar la solucion.

Consideraciones previas para la solucién: la funcion que inserta los datos.

El primer paso légico para hacer una insercion es definir una funciéon que contenga una sentencia del tipo """ INSERT INTO
SttridataSet+""" L " tabla+""" T ("""+campos+""") VALUES"""+valores+"""""" donde dataSet es el conjunto de
datos donde se encuentra la tabla en la que se van a escribir los datos, tabla es el nombre de ésta, campos se refiere a los
campos Yy valores es el conjunto de valores que se va a insertar en la tabla. Sin embargo, en este escenario existen mas
pasos, pues debemos tener en cuenta las validaciones a realizar que se derivan de los dos casos explicados al final del
apartado anterior, es decir, antes de realizar la insercidon debemos validar si los campos involucrados en esta insercion son
todos de tipo STRING, o si alguno de ellos no lo es. Después de esta validacion, la funcion debe determinar si los datos se
ordenan de una manera u otra, pues ambos casos requieren de procesos diferentes para su ordenamiento. Y, finalmente,
debe construirse la sentencia SQL y ejecutarse la insercion. Teniendo todo esto en cuenta, la funcion de insercion tiene la
siguiente estructura (Lakshmanan, 2021):

insercion (cliente,projectId:str,dataSet:str,tabla:str,campos:str,valores:str): listaCampos =
campos.split (", ")
validacion = validarDatos (cliente,projectId,dataSet, tabla,campos)

f (type (validacion) . name == 'str'):
valores = generarValoresString(valores,len(listaCampos)) else:

valores = generarValoresNoString(validacion,valores)

queryistring = "UUMINSERT INTO “"""+dataSet+"""."""+tabla+""" ' ("""+campos+""")
VALUES"""+valoregs+""mmmn
query job = cliente.query(query string)

C-3

Figura 2. Funcién de insercion en Python para BQ.

La descripcion de los parametros de esta funcién es la siguiente:

1. cliente: es el objeto Client usado para ejecutar las sentencias SQL en BQ.
2. projectld: es el id del proyecto de BQ que se usa para extraer los metadatos en la funcién validarDatos().
3. dataSet: es el nombre del dataset del proyecto de BQ que se usa para extraer los metadatos en la funcion validarDatos().
4. tabla: es el nombre de la tabla de BQ de la que se van a extraer los metadatos en la funcién
validarDatos().
5. campos: son los campos cuyos metadatos se van a extraer en la funcién validarDatos() y en los que se va a insertar
informacion.
6. valores: los valores que se van a insertar en la tabla.
Por otro lado, listaCampos almacena la lista obtenida de dividir el parametro campos usando una coma como
parametro. validacion almacena el resultado del método validarDatos() (este método se explica en el siguiente apartado).
La estructura if-else nos ayuda a decidir si los campos a insertar son Unicamente de tipo STRING o de otro tipo (siguiendo
lo mencionado acerca de los casos en cuestion). En cualquiera de los dos casos, los métodos mencionados ordenan los
datos de modo que se obtenga la estructura requerida por SQL (estos métodos se explicaran mas adelante). Por ultimo, se
construye la sentencia SQL y se ejecuta la insercion.
Como podemos observar, realizar la insercion en este escenario requiere de varios subprocesos que cuentan con
cierta complejidad y que seran explicados a continuacion.
4. Lafuncién que valida los datos.
La funcion que valida los datos tiene el objetivo de terminar si en el conjunto de campos involucrados en la insercidn existe
alguno cuyo tipo de dato es diferente de STRING o si la totalidad de ellos son de este tipo. Una vez que se determina esto,
la funcién devuelve una lista con los metadatos (Holowczak, 2022) o propiedades de los campos (0 mas propiamente de la
tabla) en los que se insertara la informacion. Necesitamos esto para saber qué funcion de ordenamiento usaremos
después. La funcién tiene la siguiente estructura:
def validarDatos (cliente, projectId: str,dataSet: str,tabla: str,campos: str)->str: full table path =
projectId + "."+ dataSet + "." + tabla
listaCampos = campos.split(",")
metaDatosTabla = cliente.get table(full table path) found = []
for j in range(len(listaCampos)) :
for k in range (len(metaDatosTabla.schema)): if(listaCampos[j] == metaDatosTabla.schemal[k].name) :
found.append (metaDatosTabla.schemalk])
for x in found:
if (x.field type != "STRING"): retorno = found
break else:
retorno = campos
return retorno
Figura 3. Funcién de validacién de datos.
La descripcion de los parametros es la siguiente:
1. cliente: es el objeto Client usado para ejecutar las sentencias SQL de BQ.
2. projectld: es el id del proyecto de BQ donde se encuentra la tabla de la que vamos a extraer metadatos.
3. dataSet: es el nombre del dataset del proyecto de BQ en el que se encuentra la tabla de la que vamos a extraer
metadatos.
4. tabla: es el nombre de la tabla de BQ de la que se van a extraer los metadatos.
5. campos: son los campos cuyos metadatos se van a extraer.

Por otro lado, las variables tienen las siguientes funciones: full_table path: sirve para construir la ruta completa de
C-4

la tabla cuyos metadatos se van a extraer. listaCampos: almacena la lista obtenida al dividir la cadena recibida en campos,
usando la coma como parametro. metaDatosTabla almacena los metadatos de la tabla a la que se quiere insertar
informacion, esto se hace en forma de objeto (de la clase Schema). Esto se logra usando la APl de BQ/GCP y projectld,
dataSet y tabla como parametros. found es una lista en la que se van a guardar los campos cuyos tipos de dato sea
diferente de STRING.

Ahora bien, los ciclos for anidados que se encuentran entre la linea 32 y la 35 tienen la siguiente légica: el primero
recorre, uno a uno, todos los elementos de listaCampos, mientras el segundo hace lo mismo, pero con la lista
metaDatos.schema. Luego se encuentra un if en el que la condicién es: si alguno de los elementos de
listaCampos es igual a alguno de los nombres contenidos en metaDatos.schema, entonces guarda ese elemento en la lista
found.

Una vez que se han terminado los recorridos mencionados, se recorre found con la intencién de lograr el objetivo
de validarDatos: la estructura for-in recorre elemento a elemento a found y dentro tiene otra estructura if- else, cuya
condicion es que si alguno de los tipos de datos de los campos guardados en la lista en cuestion es diferente de STRING,
entonces retorno (la variable a retornar) almacena todo en la lista found y se detiene el ciclo. En otro caso, se termina de
recorrer la lista y si todos los campos son de tipo STRING, se devuelve retorno pero almacenando la cadena de texto que
contiene los campos involucrados.

Cuando ya se ha realizado este proceso, en la funcién insertar() se encuentra una variable que guarda los
resultados de la funcién recién descrita. Luego, en la estructura if-else mencionada (Figura 2., lineas 133- 136) se
determina si hay que usar el método que ordena los valores para campos cuyos tipos de datos son todos STRING o no. En
el siguiente apartado describiremos generarValoresString(), que es el método que se ejecuta cuando validarDatos()
devuelve una cadena de texto.

5. Lafuncién que ordena los valores cuando todos los campos son de tipo STRING.
generarValoresString() es una funcién que nos ayuda a obtener la estructura de datos requerida por BQ, a saber:
(dy, dy, ds3, dy), (1)
(d5, d6! d7 dg),
(dm—3' dm—Zl dm—l dm);

Donde d3, dz, d3, ... d,, representa el conjunto de datos dispuestos en renglones. En cada renglén, se encuentran
paréntesis que encierran un determinado numero de datos separados por una coma. El nimero de datos que se encuentra
entre paréntesis depende del nUmero de campos que se van a insertar. Por ejemplo, si
con una insercidbn vamos a agregar valores a 4 campos, entonces entre cada uno de los paréntesis habra 4 datos. El
numero total de renglones va a depender de la cardinalidad del conjunto de datos a insertarvi.

En este sentido, generarValoresString() nos ayuda a obtener una estructura como la mencionada cuando los
campos de la cadena de texto recibida son todos de tipo STRING. La estructura de la funcién es la siguiente:

def generarValoresString(valores: str, numeroCampos: int)->str: listaCadena = valores.split(",")
contador = 0 w = ""
gz = "n
y = wn

while (contador < len(listaCadena)): for i in range (numeroCampos) :

y = listaCadena[contador]
Z +: ("'" + y + "l,")
contador += 1

W o= u(u + Z[:—IJ + "),\D" z = "nn

return w([:-2] + ";"
Figura 4. Funcién que genera la estructura requerida por la insercion de SQL.

C-5

N —

Pob =

La descripcion de los parametros es la siguiente:

valores: se trata es una cadena de texto que contiene los valores a insertar en una tabla de BQ.

numeroCampos: es un numero entero que nos indica el numero de campos involucrados en la inserciéon de la tabla de BQ
(cuando se llama la funcion, lo que se recibe aqui es el tamafo de la lista obtenida de dividir la cadena campos, lo cual se
hace en la funcién insercion()).

Las variables declaradas entre las lineas 2 y 4 tienen las siguientes funciones. listaCadena almacena una lista que
resulta de dividir la cadena valores usando una coma como parametro. contador es una variable que nos sirve para extraer
los elementos de listaCadena y para realizar el conteo de las iteraciones del ciclo while. w, z, y son variables que nos
ayudan a realizar las concatenaciones mostradas arriba.

En cuanto al ciclo while, este nos ayuda a recorrer listaCadena. El numero de iteraciones del ciclo for depende del
numero de campos a insertar, de modo que las concatenaciones mostradas ahi se realizan el mismo numero de veces que
numeroCampos. Asi, por ejemplo, si numeroCampos = 4, entonces dichas concatenaciones se van a realizar 4 veces. Al
mismo tiempo, esto también implica que se van a concatenar 4 elementos, es decir, el nUmero de elementos de
listaCadena que se van a concatenar es el mismo que el de numeroCampos. Dicho sea de paso: numeroCampos va a
determinar el niumero de renglones de la estructura en cuestion.

Por otro lado, las concatenaciones se realizan de la siguiente manera:

El elemento extraido de listaCadena con contador se guarda en y.

En z se guarda y concatenado con la coma y las comillas que requiere SQL por tratarse de un dato de tipo STRING.

A contador se le suma 1 para pasar al siguiente elemento.

Cuando se acaban las iteraciones del ciclo for, la cadena concatenada en z se concatena con los paréntesis que delimitan
a los datos del renglon y se guardan en w. En este punto también se verifica el valor de contador para ver si se sigue
cumpliendo la condicién del while. Si si, se repite el proceso. En caso contrario se termina.

z se iguala con “” (en cierto sentido se vacia) para repetir el proceso y formar otro renglén. Esto se repite hasta que se
acaben los elementos de listaCadena y se deje de cumplir la condicién mencionada. En este caso, w es el valor que se
regresa con ciertas modificaciones que eliminan caracteres que no se necesitan y agrega un ; para indicar que ahi se
termina esa parte de la sentencia.

Una vez que se ejecuta esta funcion, la cadena que obtenemos es la siguiente (que tiene la estructura requerida
por BQ y se obtiene a partir de la cadena de texto “Avenida 1,Python1,Avenida2,Python2”):

('Avenida 1', 'Pythonl'),
('Avenida2', 'Python2"') ;
Figura 5. Resultado de ejecutar generarValoresString().

Como mencionamos, esta aplicacion nos sirve para cuando los campos con los que estamos trabajando son todos
de tipo STRING (la muestra de ello es la Figura 5). Sin embargo, cuando los datos son de tipo INTEGER, BOOLEAN,
FLOAT, etc., o cuando en este conjunto hay campos de tipo STRING y otros, debemos realizar un procedimiento parecido,
pero con ciertas modificaciones que aumentan un tanto la complejidad de lo ya explicado. Esto se trata en el siguiente
apartado.

La funcién que ordena los valores cuando no todos los campos son de tipo STRING.

Como bien dijimos, el hecho de que en una insercién de SQL haya campos cuyo tipo de datos sea STRING, junto con
campos cuyo tipo de dato es de cualquier otro, aumenta la complejidad de lo explicado en el apartado anterior, pues ahora
los renglones de datos no tendran esta estructura: ("d:","dz","d3", ...,"d,"), sino que tendran otras como (d4, "d;", "d3", ...,
dy), ("d{",dy, ds, ..., dy), etc., porque cualquiera de estos puede ser un entero, booleano, flotante, etc.

La complejidad en este contexto radica en saber qué elementos van a llevar comillas y cuales no. Se ha
desarrollado una solucién para esto, pero antes debemos explicar ciertos aspectos necesarios para llegar a ella. Por lo
pronto, empezaremos por decir que en lugar de mostrar la totalidad de la estructura de la funcién
generarValoresNoString(), mostraremos secciones de la misma, pues cada seccion tiene una mision especifica e implica
descripciones mas puntuales que las de las funciones anteriores.

C-6

La primera seccion es la de los parametros y las variables iniciales:
def generarValoresNoString(validacion:1list, valores: str)->str:

listaCadena = valores.split(",") listaValidacion = [] listaValidacion2 = []
W — mn

7 =
diferencia = len(validacion)

Figura 6. Seccidn de parametros y variables iniciales de la funcién generarValoresNoString().

nn

Los parametros validacion y valores, y las variables listaCadena, w e y tienen exactamente las mismas funciones
que en la funcién generarValoresString(), por ello no las explicaremos aqui. Por otro lado, listaValidacion y listaValidacion2
son listas que nos permiten guardar por separado los resultados obtenidos en validacion (esto lo explicaremos mas
adelante). diferencia es una variable que nos permite almacenar el tamafio de la lista validacion. Este valor sera importante
mas adelante porque nos permitira realizar procedimientos relevantes en esta funcion.

La siguiente seccion es la de validacién. Redundante, si, pero aun con la validacién ya obtenida en validacion
necesitamos hacer otra por el siguiente motivo: la lista en cuestion contiene instancias de la clase Schema que indican el
nombre y el tipo de dato de los campos involucrados en una insercion. Entre estos campos puede haber algunos que sean
de STRING y otros de tipo diferente. En este caso, es necesario separar el conjunto de los que no son STRING de los que
si, para saber cuales llevan comillas y cuales no. Por ello, la seccién de validacion se estructura de la siguiente manera:

for x in validacion:
if(x.field type != 'STRING'): listaValidacion.append(validacion.index (x))

for y in validacion:
if(y.field type == 'STRING'): listaValidacion2.append(validacion.index(y))

Figura 7. Seccion de parametros y variables iniciales de la funcion generarValoresNoString().

Aqui se encuentran dos ciclos for-in. El primero recorre la totalidad de validacion. Recordemos que dicha lista
contiene objetos de la clase Schema, razén por la cual en cada iteracion se pregunta si la propiedad field _type de cada
uno de estos objetos es diferente de STRING. Si esto es verdadero, entonces los indices en los que se encuentran tales
objetos se almacenan en la lista listaValidacion con el método append(). En resumen: listaValidacion contiene los indices
de validacion en los que se encuentran valores cuyo tipo de dato es diferente de STRING. La misma ldgica se sigue en el
segundo for-in, con la diferencia de que en listaValidacion2 se almacenan los indices de los campos cuyo tipo de dato son
STRING. Hacemos esto porque el saber en qué indices se encuentran estos campos nos ayudara mas adelante (en
conjunto con diferencia) a determinar qué datos deben ir entre comillas y cudles no, pero aun faltan dos pasos (secciones)
para llegar a ese punto.

La siguiente seccion es la de igualacién de tamafio entre listas. Esto mas que se ser una necesidad de la funcion en
cuestion, es un requerimiento de Python: si intentamos ejecutar esta funcion sin esta seccién, entonces obtenemos el error
“IndexError: list index out of range” debido a la diferencia de tamafos que existe a veces entre listaValidacion y
listaValidacion2. Estas listas deben ser del mismo tamafio para que, cuando sean recorridas, no obtengamos el error
mencionadoVi.

La estructura de la seccién es la siguiente:
if (len(listaValidacion)>len(listaValidacion2)) :

diff = len(listaValidacion) - len(listaValidacion2) for i in range(0,diff):
listaValidacion2.append("-") elif(len(listaValidacion)<len(listaValidacion2)):
diff = len(listaValidacion2) - len(listaValidacion) for 1 in range(0,diff):

listaValidacion.append("-")
Figura 8. Seccion de igualacion entre listas de la funcion generarValoresNoString().

Entre las lineas 70 y 77 se encuentra una estructura if-elif. La parte del if verifica si el tamafio de listaValidacion es
mayor que el tamafio de listaValidacion2. En caso afirmativo, el tamafio de listaValidacion2 se resta al de listaValidacion y
se usa diff (la diferencia) en un ciclo for in para llenar con guiones los indices que le faltan a listaValidacion2 para tener el
mismo tamafo de la otra listaii.

En la siguiente seccién, y con el mismo objetivo de no obtener el error “IndexError: list index out of range”,
debemos igualar el tamafio de ambas listas con el tamaio de la lista validacion.

C-7

La estructura de esta seccion es la siguiente:

for i in range (0,diferencia-len(listaValidacion)): listaValidacion.append("-")
listaValidacion2.append("-")
Figura 9. Seccion de igualacioén de listas con el tamario de validacion
de la funcién generarValoresNoString().

Como se puede observar, se trata Unicamente de un ciclo for que va de 0 a el nimero resultante de restar el
tamanfio de las listas obtenido en la seccién anterior y el tamafio de la lista validacion’.

Ahora bien, todo lo que hemos venido explicando coincide en este punto, pues varios de estos aspectos se van a
utilizar para explicar algo que llamamaos algoritmo de bisqueda por saltos. Lo hemos llamado asi a falta de un mejor
término y porque requiere de ciertos “saltos” entre elementos (determinados por la variable diferencia) que nos ayudan a
identificar qué elementos deben tener tal o cual formato. La explicacion de este algoritmo se va a dividir en tres partes: 1)
el algoritmo explicado en abstracto; 2) el algoritmo en el codigo (de la siguiente seccién de la funcién); y 3) el algoritmo con
un ejemplo.

Algoritmo de busqueda por saltos (en abstraccion)
Coloquialmente entendemos que un algoritmo es un conjunto finito de pasos claros y distintos que estan destinados a
resolver un problema*. El problema que tenemos aqui es: necesitamos generar con Python una estructura textual
(aceptada por SQL) que nos permita insertar un conjunto de datos en una tabla de BQ, cuando los campos involucrados en
la insercion tienen tipos de dato diferentes de STRING (todo esto con el trasfondo de nuestra aplicacion peculiar
mencionada al principio; los pasos a seguir se muestran mas adelante).

Ahora bien, lo primero que debemos observar para resolver dicho problema es recordar parte de la estructura de la
Figura 1, la cual antes de la palabra reservada values tiene los nombres de los campos en los que se van a insertar datos,
y después (dispuestos en renglones y columnas) tiene a los datos que se van a insertar. Considerado esto, tenemos una

figura como la siguiente:
(productoNombre, productoDesc, productoPrecio, tPid, tiendald) values
("iPhone XL","iPhone de ultima generacién",20000.00, 2, 1), ("MOTO G","Almacenamiento: 16 Gb, SO:
Android",10000.00, 1, 2),
("RM", "Teléfono pequefio y resitente",20000.00, 4, 3),
("ZTE", "Almacenamiento: 4GB, SO: Android", 6000.00, 3, 4),
("Nokia 5120","Teléfono austero",500.00, 2, 5),
("GALAXY Z Omega","Almacenamiento: 64 Gb, SO: Android",50000.00, 5, 5),
("iPhone 5", "Almacenamiento: 60 gb, SO: i0S",6000.00, 1, 4),
("BlackBerry 7230","Almacenamiento: 4 Gb, SO: RM",1000.00, 2, 3),
("Xiaomi Redmi Note 8", "Almacenamiento: 64 Gb, SO: Android 11 MIUI 12.5",30000.00, 5, 3),
("Huawei Nova 9", "Almacenamiento: 64 Gb, SO: EMUI 12 ",12999.00, 3, 2),
("BlackBerry Z10","Almacenamiento: 32 Gb, SO: BlackBerry 10",15000.00, 4, 1);
F

igura 10. Estructura de campos y datos de una sentencia de insercion.

C-8

Como podemos observar, en la parte posterior de values estan los campos de la sentencia, los cuales
determinan, por decirlo de algin modo, las columnas en las que se disponen los datos, pues debajo del nombre de cada
campo, se encuentran datos que corresponden a sus respectivos tipos de dato: productoNombre es un campo de tipo
STRING y los elementos encontrados abajo son de tipo STRING, por eso se escriben entre comillas; productoPrecio es de
tipo FLOAT, y los datos encontrados abajo son de tipo FLOAT, lo que implica que no lleven comillas.

Podemos abstraer lo mostrado en la Figura 10 para obtener la siguiente estructura:

(COI 1, Cy, C3) (2)
(d(), dl! dz, d3)r

(dlb d5: d6r d7)' (dBI d9v lev

d11), (d12, d13, di4, dis), (di6 di7,

dig, di19), (dz0, d21, d22, d33), (d2a

das, dae, d27), (d2g, d2o, d3o, d31),

(d3z, dz3, dza, dzs), (dze, d37,

dzg, d3g),

(d4o, da1, dap da3);

Donde ¢, a c3 simbolizan los campos involucrados en la insercidn y dy a d43 representan los datos ubicados debajo
que se van a insertar a la tabla. Podemos hacer una abstraccion aiin mayor y obtener una estructura como la siguiente:

(Co, Cq, o Cn) (3)
(dOI d 1) d2: d3) 4
(44' d.5' d6' d7)'

(dm+1: dm+2v o dm+n);

En esta expresion c y d tienen exactamente la misma funcién que en la anterior. n representa el nimero de
campos, m representa la posicién de cada dato en cada renglén y m + n representa la ultima posicion en un renglon de
acuerdo al niumero total de campos. Antes de seguir avanzando debemos hacer algunas aclaraciones:

Es evidente que la estructura mostrada arriba se asemeja a una matriz, de hecho si nos centramos Unicamente en la parte
de los datos podriamos representarla como una. Sin embargo, dado que no estamos tratando Unicamente con nimeros,
sino con diferentes tipos de datos, la consideraremos mas como un arreglo.

Debemos notar (porque esto sera importante en unos momentos) que n es la misma cantidad que

diferencia, pues ambas nos indican el tamafio del conjunto de campos involucrados en nuestra insercion.

as,PoC?iciones de los d%tos del prig1er renglén siem re_coincidtergI con las posiciones de los campos. Es

ecCl siempre coinciae con ¢ con ¢ y asi sucesivamente”.
0 0 1 1

Una vez realizadas estas explicaciones, ya podemos empezar a explicar el algoritmo propiamente. Lo primero que
debemos notar es que gracias a los arreglos descritos, podemos ver cuales son los datos que le corresponden a cada
campo. Por ejemplo, si tenemos un arreglo de 4 campos y 12 datos como el siguiente:

(co ¢, ¢ C3) (4)
(do, dy, dy d3),
(d4, d5) d6l d7)'
(dg, do, dio, di1);

C-9

N —~

for

En el que podemos observar que a co le corresponden do, d4,y ds. Algo parecido pasa con el resto de campos. Para
nosotros es evidente porque lo tenemos ordenado visualmente y podemos incluso senalarlo, pero para la computadora no.
La maquina necesita que de algun modo, ya sea en Python, JavaScript o Java, le indiquemos qué elementos le
corresponden a cada campo (pues esto también le ayudara a saber cuales llevan comillas y cuales no) y para que sepa
esto, debemos indicarselo con n o diferencia y teniendo en cuenta la aclaracion namero tres. Por ejemplo, si queremos
indicarle a la computadora qué datos le corresponden a c1, primero debemos tener en cuenta que el primer dato que le
corresponde es di. Luego, para saber cuales son los datos siguientes, suponemos que m = 1 (por estar di1 en la posicion
1) y le sumamos n = 4. De este modo
m+n =144 =5, por lo tanto, el siguiente dato es ds por estar en la posicion 5. Siguiendo esta misma logica, el siguiente
dato sera dyxi.

Este dato (d9) también sera el Ultimo, pues como mencionamos hace algunas paginas, la division del

numero de datos entre el nUmero de campos determina el nimero de renglones. De modo que si [{co, c1, ¢z, c3}| =4 ¥ |{d,,
dy, dy, ds, ds, ds, dg, d7, dg, do, d1o, d11}] = 12, entonces 12/4 = 3, lo que nos indica que sdlo habra tres renglones en este
arreglo y que a cada campo solo le corresponden tres datos porque solo existen tres renglones.

Ahora bien, supongamos que cq es de tipo BOOLEAN, c; es de tipo INTEGER, y ¢; y ¢3 son de tipo STRING. Con
lo ya explicado, sabemos qué elementos le corresponden a co Y c1, I0s cuales no deben llevar comillas, mientras que los de
cz ¥ c3 si las llevan, por lo que la cadena que debemos pasar a la sentencia de insercion debe verse de la siguiente
manera:

(co, ¢y, C2 c3) (5)
(do, dl’ "dz"’ "d3"),
(d4, ds’ "d6"’ "d7"),
(dg, do, "dyo", "d11");

Como podemos observar, dy, dy4, dg Y di, ds, d9 no llevan comillas, pues los tipos de dato de sus campos
correspondientes no lo exigen. Los datos restantes si las necesitan porque sus respectivos campos son de tipo STRING.
Antes de pasar a la siguiente seccion, haremos un pequefio resumen de los pasos del algoritmo en cuestion:

Determinar el numero de renglones del arreglo mediante la division del nimero de datos entre el niumero de campos.
Determinar el numero de campos para saber qué tantos elementos se deben saltar en cada iteracion (y qué tantos deben
escribirse en cada renglén).

Determinar, a partir de las posiciones de los campos, qué datos seran los primeros involucrados al empezar a realizar las
sumas (o saltos).

Realizar las sumas que nos permiten saber qué elementos le corresponden a cada campo.

Agregar o quitar las comillas a cada dato, segun el tipo de dato del campo que le corresponde.

Detenerse hasta que se haya alcanzado el nimero de renglones vy la totalidad de datos.

En la siguiente seccion, explicaremos cémo todo esto se representa en el cddigo. Sera un tanto mas complicado,
pues dado que la maquina carece del recurso visual del arreglo, todo el proceso se realizara a través de ciclos for, listas y
contadores.

Algoritmo de busqueda por saltos (en cédigo)
En esta seccion mostraremos como se codifica el algoritmo de bisqueda por saltos. Por tanto, lo primero que haremos sera
mostrar una parte de la estructura que tiene el cédigo en Python:

i in range(0,len(listaCadena)): for j in range(0,diferencia):
if(listavValidacion[j] == 1):
y = listaCadenali]
Z +: (""+y+", ")
listaValidacion[j] += diferencia elif (listaValidacion2[]j] == 1i):

y = listaCadenali]
Z +: ('l"l+y+l|l,l|)
listaValidacion2[j] += diferencia

w o= "" 4 Z[:_l] + ll,ll z = "nn

C-10

for

for

for

Figura 11. Primera parte del codigo del algoritmo de busqueda por saltos.

Como podemos observar, este cdédigo se compone de dos ciclos for, uno anidado dentro del otro. El primero de
ellos recorre todos los elementos de listaCadena (que contiene los valores a insertar en la tabla de BQ), y el segundo sélo
se repite un numero de veces igual al nUmero de campos que se van a usar en la insercion. Si bien en este punto no se
forman propiamente los renglones, si se toma en cuenta diferencia para tener un orden en la asignacion de las comillas y
llevar el conteo de los renglones para detenerse cuando sea necesario (primer paso del algoritmo). Esto también implica
que por cada elemento recorrido de listaCadena, se van a ejecutar n (diferencia) iteraciones del segundo for (segundo paso
del algoritmo).

Por otra parte, tenemos una estructura if-else. La loégica de esta estructura es la siguiente: si un elemento de
listaValidacion (la lista que contiene los indices de los campos cuyo tipo de dato no es STRING) es igual al indice que lleva
el conteo de listaCadena (i), entonces el elemento de listaCadena se guarda en la variable y; y se concatena con un
caracter vacio y una coma para acumularse en z (sin comillas porque en este apartado se encuentran los datos que no son
STRING); y por ultimo, al elemento de listaValidacion se le suma diferencia.

Antes proseguir debemos aclarar ciertas cuestiones. La primera es que en las primeras iteraciones de este ciclo for
(las primeras n iteraciones que coinciden con el numero de campos involucrados en la insercion), el programa esta
determinando cuales son los primeros datos que coinciden con los campos. Es decir, listaValidacion contiene los indices
de los campos, pero también son los indices de los datos iniciales con los que se haran los saltos mencionados (lo cual es
el tercer paso de nuestro algoritmo).

La segunda aclaracién es que los saltos en esta parte del cédigo se realizan con listaValidacion[i]+=

diferencia (aqui se ejecuta el paso numero cuatro del algoritmo*ii): una vez que se encuentra una coincidencia entre el
elemento de esta lista y el indice del dato, al elemento de la lista se le suma diferencia para realizar el salto y obtener el
siguiente indice, de modo que en la siguiente iteracion, si vuelve a haber una coincidencia (entre el nuevo valor de
listaValidacion y el indice del dato), se repetira el proceso y se obtendra el valor del siguiente dato a insertar.

La tercera aclaracion es que el procedimiento del elif es exactamente igual al que acabamos de describir, con la
diferencia de que en esta condicién es donde se asignan las comillas a los datos indicados porque listaValidacion2
contiene los indices de los campos que son de tipo STRING.

Una vez que se termina el proceso de validacion y se alcanza el limite de iteraciones para el segundo for, se vuelve
a hacer una concatenacioén (una por cada iteracion del primer for) en la que a z se le quita el ultimo elemento, se concatena
con un caracter vacio y una coma, y se acumula en la variable w. Luego z se “vacia” y se repite el proceso hasta alcanzar
el limite de listaCadena. Si bien en esta parte del cddigo no se forman los renglones, si se hace el conteo indicado para
perfilar la construccién de los mismos.

Para la generacién de los renglones se codificaron otras cuantas lineas que se explican a continuacion:

w = w[:-1]

listStr = w.split(",") listStr2 = []
contador = 0

rango = len(listStr)/diferencia

k in range (0, int(rango)): listStr2.append("")

for i in range (0, int (rango)) :
for j in range (0, diferencia):

listStr2[i] += (listStr[contador]+",") contador += 1

i in range(0,len(listStr2)): listStr2[i] = " ("+1listStr2[i][:-1]1+")"
w = "n

i in range(0,len(listStr2)): w += 1listStr2[i] + ",\n"

w=w[:=2] + ";"
Figura 12. Segunda parte del cédigo del algoritmo de busqueda por saltos
(generacion de renglones).

N —~

En la linea 104 se retoma la variable w para quitarle el ultimo caracter, pues este impide obtener la estructura
deseada. Luego en /istStr se almacena una lista que se obtiene de dividir la cadena obtenida en la linea recién descrita (se
guardan los datos a insertar, pero esta vez con el formato que le corresponde a cada uno, con o sin comillas). listStr2 nos
permite inicializar una lista que usaremos mas adelante. contador es un contador que nos permite realizar el conteo en
loops posteriores. rango es la variable que almacena el nimero de renglones, el cual se obtiene, como dijimos, de dividir el
tamanio del conjunto de datos entre el numero de campos.

El loop de las lineas 111 y 112 tiene el objetivo de llenar listStr2 con espacios vacios para que tenga el mismo
tamario de rango. Hacemos esto para evitar el error “IndexError: list index out of range”. Si no lo hacemos, como la lista no
tiene elementos ni indices, cualquier operaciéon que se realice sobre ella se considerara como fuera de rango.

El ciclo de las lineas 115 a 118 tiene el objetivo de agrupar los datos en renglones. El primer loop itera de 0 al
numero de renglones obtenido. El segundo va de 0 a diferencia, esto con el objetivo de agrupar el nimero debido de datos
en cada renglon. Esto se hace obteniendo cada elemento de /istStr2 (con ayuda de contador<v) para concatenarlo con una
coma y acumular esta cadena en cada uno de los elementos de /istStr2. Dicho de otra manera, el primer loop itera una vez
por cada renglén, y en cada uno de estos renglones se contatena/acumula el nimero de datos que le corresponden.

En el loop de las lineas 120 y 121 Unicamente se agregan los paréntesis que delimitan a cada renglén y se elimina
el ultimo caracter, que es una coma que esta de mas. En la linea 123 se “vacia” la variable w para poder concatenar en
ella cada elemento de /istStr2, junto con una coma y su respectivo salto de linea. Por ultimo, a w se le quitan los ultimos
dos caracteres (un salto de linea y una coma que sobran) y se le agrega un ; para poder retornarla.

Aqui es donde se termina la explicacién del algoritmo de busqueda por saltos, junto con algunos recursos que se
tuvieron que agregar para completarlo. También se finaliza la explicacion de la funcion generarValoresNoString(). A
continuacion se muestra un ejemplo de como funciona este cédigo.

Algoritmo de busqueda por saltos (en accion)
Para este ejemplo supongamos que tenemos una tabla llamada Proveedores, a la que queremos insertar dos datos
(“1,proveedor1,2,proveedor2”) en los campos proveedorld y proveedorNom. proveedorld es de tipo INTEGER y
proveedorNom es de tipo STRING.

Ahora bien (aqui vamos a omitir algunos pasos para hacer mas dinamica esta explicacion), lo primero que debemos
considerar es que lista validacion va a tener los siguientes elementos:

SchemaField('proveedorld’, INTEGER', 'NULLABLE', None, (), None).
SchemaField('proveedorNom', 'STRING', 'NULLABLE', None, (), None).

Los cuales tienen informacién acerca de los campos mencionados. La propiedad que importa es la llamada
field_type, pues es la que contiene el tipo de dato de cada campo. Los ciclos for que trabajan con las listas de validacion
son los que se encargan de usar esta propiedad para almacenar los indices de dichos campos. En este ejemplo,
listaValidacion tiene el numero 0 como elemento vy listaValidacion?2 tiene el nUmero 1.

C-12

Luego de hacer la igualacion de tamafos, es momento de pasar a los ciclos for que realizan los saltos.

1. Primera iteracion del for posterior i = 0:
a. Primera iteracién del for interior:

i.
ii.
iii.
iv.
V.

j=0.

listaValidacion|j] = 0 (es igual a i).

listaCadenal[0] = 1.

1 se concatena en z sin comillas y con una coma.

listaValidacion|j]+= diferencia = 0 + 2, por tanto listaValidacion[0] = 2.

b. Segunda iteracion del for interior:

j=1.
listaValidacion[j] ="' —', pasamos a elif.
listaValidacion2|j] ="' —".

2. Segunda iteracién del for posterior i = 1:
a. Primera iteracion del for interior:

Vi.

j=0.

listaValidacion|j] = 2, pasamos a elif.

listaValidacion2[j] = 1 (es igual a i).

listaCadena|l] = proveedorl.

proveedorl se concatena en z con comillas y con una coma.
listaValidacion2[j]+= diferencia = 1 + 2, por tanto listaValidacion2[0] = 3.

b. Segunda iteracion del for interior:

j=1.
listaValidacion[j] =" — ', pasamos a elif.
listaValidacion2[j] = ' —".

3. Tercera iteracion del for posterior i = 2:

i
ii.
iii.
iv.
V.

j=0.

listaValidacion[j] = 2 (es igual a i).

listaCadenal2] = 2.

2 se concatena en z sin comillas y con una coma.

listaValidacion[j]+= diferencia = 2 + 2, por tanto listaValidacion[0] = 4.

b. Segunda iteracion del for interior:

j=1.

listaValidacion|j] ="' —', pasamos a elif.
listaValidacion2[j] =" —'.

4. Cuarta iteracion del for posterior i = 3:
a. Primera iteracion del for interior:

i
ii.
iii.
iv.
V.
vi.

j=0.

listaValidacion[j] = 4, pasamos a elif.

listaValidacion2[j] = 3 (es igual a i).

listaCadena|3] = proveedor?2.

proveedor?2 se concatena en z con comillas y con una coma.
listaValidacion2[j]+= diferencia = 3 + 2, por tanto listaValidacion2[0] = 5.

b. Segunda iteracion del for interior:

i.

ii.
iii.
iv.

j=1.

listaValidacion[j] =" — ', pasamos a elif.
listaValidacion2[j] ="—"

En este punto se terminan las iteraciones.

Cuando se terminan las operaciones, obtenemos una cadena de texto como la siguiente:

“1,'proveedor1',2,'proveedor?2',”, la cual, después de ser tratada por la segunda seccion del codigo del algoritmo,

permite obtener la siguiente estructura:

(1, "proveedorl'),
(2, 'proveedor2');

Figura 13. Resultado del algoritmo y la funcidon generarValoresNoString().

10.

1.

Como podemos observar, los elementos que son de tipo STRING llevan sus respectivas ,", y los que son de tipo
diferente no la llevan. Ademas, los paréntesis, comas, saltos de linea y ; se encuentran en los lugares indicados. Una vez
que hemos terminado esta explicacion, debemos regresar a la funcién insercion().

De regreso a la funcion insercion()

Retomando la Figura 2, podemos ver que ya hemos explicado los elementos necesarios para que se realice la insercion:
explicamos las funciones validarDatos(), generarValoresString() y generarValoresNoString(), las cuales nos ayudan a tener
la estructura necesitada por BQ para que se puedan introducir los datos. Una vez que se ha realizado la validacion de las
lineas 133-136, todos los datos generados con estas funciones y los recibidos como parametros, se concatenan en la
variable query_string y luego esta se pasa como pardmetro para realizar la insercion. Si no hay errores, se realizara este
proceso.

Conclusiones

Primero debemos sefalar lo obvio: la complejidad computacional de las funciones es 0(n?), debido a los numerosos for
anidados que encontramos a lo largo de ellas. Sabemos que esto puede afectar el desempefio de las funciones cuando
nos encontremos en escenarios con grandes cantidades de informacion, por lo cual se debe buscar una alternativa con
una complejidad menos agresiva. Suponemos, pues, que se pueden explorar otras opciones que usen estructuras de datos
(como Great Learning, 2022, que usa una estructura de datos para revertir una lista ligada) con un enfoque iterativo, o
incluso buscar alguna opcion recursiva que nos permita resolver este problema sin necesidad de caer en el peor de los
casos. Sin embargo, en este espacio no es posible realizar esta tarea porque nos encontramos con una primera
aproximacion a la resolucion del problema planteado y al algoritmo de busqueda por saltos (el cual también se encuentra
ligado a 0(n?)). Ademas esto se saldria de los objetivos del escrito.

En este mismo sentido, también queremos resaltar la importancia del algoritmo recién mencionado. Si bien la
funcién principal de éste es generar la estructura requerida por BQ, tenemos la suposiciéon de que puede tener otras
aplicaciones. Es decir, pensamos que puede ser usado para realizar alguna especie de busqueda en estructuras parecidas
al arreglo mostrado en paginas anteriores o podria, por ejemplo, usarse cuando se desee realizar una busqueda en
arreglos de dos dimensiones con técnicas parecidas a la busqueda por filas o busqueda por columnas (algoritmos que
tienen estructuras similares al de busqueda por saltos). Asi también, las demostraciones por induccion matematica y demas
cuestiones relacionadas con analisis y disefio de algoritmos quedan pendientes, pero no olvidadas, para momentos
posteriores.

Por otra parte también estamos conscientes de una de las objeciones mas grandes que pueden hacerse a este
escrito: el uso de algun framework o de la API de Google Cloud para Python, e incluso en este momento el de una
“inteligencia artificial”, como chatGPTno GitHub Copilot, podrian haber hecho la insercion mas sencilla, incluso hubiera
hecho mas sencillo el desarrollo de toda la aplicacion. Si, es verdad. Sin embargo, el escenario en el que nos pusimos (el
de la aplicacién que Unicamente trabaja con cadenas de texto) también nos exigié pensar en como seria trabajar sin estas
erramientas. No estamos en contra de su uso, incluso pensamos que estos recursos nos ayudan a ser mas eficientes y nos
dan el tiempo para pensar en cosas de mayor complejidad, pero también quisimos pensar en cémo seria estar en un
escenario en el que hubiera que codificar desde 0 y donde no hubiera este tipo de herramientas para ayudarnos.

En relacion con lo anterior, lo que aqui desarrollamos puede ser integrado a algun framework o alguna biblioteca
cuya aplicacion se centre en BQ o incluso en SQL y demas. Esto es, se puede usar lo aqui descrito para mejorar procesos
(si es posible y a reserva de la complejidad mencionada) trabajados en Python o en cualquier otro lenguaje. Aqui usamos
dicho lenguaje de programacién debido a su popularidad en el rubro de los datos, pero si hay un lenguaje en el que se
puedan declarar funciones y arreglos, lo mostrado aqui es perfectamente replicable (muestra de ello son las pruebas
realizadas en JavaScript para combatir ciertos errores).

Esta replicabilidad se debe a las estructuras matematicas y computacionales mostradas arriba, las cuales, a pesar
de las diferencias sintacticas y lingiisticas a las que estamos acostumbrados, son las mismas y funcionan de la misma
manera, al menos en los contextos relacionados con el computo. Con esto también queremos recalcar que uno de los
retos para este trabajo fue el poner en ejercicio la légica mas que la codificacién, pues aqui lo que implicé mas tiempo y
esfuerzo fue encontrar el algoritmo, el cual no depende del lenguaje de programacién, sino, como acabamos de decir, de
las estructuras matematicas y computacionales que se nos pusieron en frente.

C-14

Esto ultimo sirve como punto de partida (y como punto final para este escrito) para trabajar, en espacios
posteriores, las cuestiones que se han dejado abiertas, pues éstas también van mas a alla de codificar con x o y lenguaje
de programacion y se encuentran mas orientadas a las estructuras de los datos, los algoritmos y las matematicas.

12. Fuentes

- Algoritmo de busqueda. (30 de noviembre de 2022). En Wikipedia.
https://es.wikipedia.org/wiki/Algoritmo_de b%C3%BAsqueda
Google. (2023) ;Qué es BigQuery?. Recuperado de: https://cloud.google.com/bigquery/docs/introduction?hl=es-419.
Google. (2023) Crear cuentas de servicio. Recuperado de: hitps://support.google.com/a/answer/7378726?hi=es
Holowczak. (2022, 19 de enero). Python Programming with Google BigQuery. Recuperado de:
https://holowczak.com/python-programming-with-google-bigquery/7/
Jenn, Jie. (2022, 13 de julio). Getting Started With Google BigQuery API In Python [video]. YouTube:
https://www.youtube.com/watch?v=ILPdRRy7dfE&t=3s
Lakshmanan, Lak. (2021, 10 de febrero). How to trigger Cloud Run actions on BigQuery events. Recuperado de:
https://cloud.google.com/blog/topics/developers-practitioners/how-trigger-cloud-run- actions-bigquery-events
Ponce, Jahaziel. (2021, 21 de febrero). Algoritmos de busqueda. Recuperado de: https://jahazielponce.com/algoritmos-de-

busqueda/

13. Notas

" Para realizar las inserciones en BQ usamos la libreria de la API de ésta, siguiendo los pasos descritos por Jenn, 2022. De este recurso
tomamos la manera de importar los médulos correspondientes y configurar el ambiente. Esto no se ve en el cadigo citado en el articulo,
pero es importante mencionarlo por el hecho de que toda esta solucion tiene el objetivo de insertar informacién de BQ. De igual manera,
esto nos ayudo, junto con Google, 2023, a configurar todo lo relacionado con la cuenta de servicio que da acceso a este recurso. Esto
tampoco se encuentra en el articulo o en el codigo por cuestiones de privacidad.

i En los siguientes apartados vamos citar coédigo, pero para tener una referencia mas general del mismo también se proporciona el
siguiente repositorio de GitHub: link de github.

it Cuando hablamos de tipos de datos diferentes de STRING, nos referimos principalmente a INTEGER, BOOLEAN, FLOAT y similares.
Casos mas especificos como el de DATE (que necesita formatos diferentes a los tipos de datos mencionados) no se tratan aqui, pero
con algunas modificaciones al codigo presentado pueden trabajarse.

v El articulo de Lakshmanan nos sirvid, principalmente, para saber como codificar las sentencias SQL dentro del cédigo de Python: fue
una bases para saber cémo usar las comillas (“) dentro del flujo del cédigo. Por otra parte y en menor medida, sirvié para confirmar que
algo de este tipo puede hacer en BQ

vLa idea de cdmo obtener los metadatos viene de Holowczak, 2022. De aqui Unicamente retomamos la sentencia que contiene la
variable full_table_path, pues esta es la que nos ayuda a extraer la informacion requerida. La dejamos con este nombre como referencia
y, como se puede observar, el tratamiento del objeto obtenido es diferente al encontrado en la fuente, pues la naturaleza de este articulo
es un tanto diferente. Por otro lado, la idea de trabajar con los metadatos surgié de la necesidad de trabajar con varias tablas, es decir, el
hecho de pensar en que esta solucién se aplicara a cualquier tabla y no sélo a una con una estructura determinada, nos llevé a concluir
que es mejor trabajar con los metadatos, pues con ellos podemos obtener el nimero de columnas y el tipo de cada una, lo cual es algo
que se puede obtener de cualquier tabla y que puede funcionar con la soluciéon. La ambicion de esta especie de automatizacion viene del
hecho de que, en la practica, las tablas que encontramos tanto en las bases de datos convencionales como en BQ siempre son variables
en cuanto a su estructura.

C-15

https://es.wikipedia.org/wiki/Algoritmo_de_b%C3%BAsqueda
https://cloud.google.com/bigquery/docs/introduction?hl=es-419
https://support.google.com/a/answer/7378726?hl=es
https://holowczak.com/python-programming-with-google-bigquery/7/
https://www.youtube.com/watch?v=lLPdRRy7dfE&t=3s
https://cloud.google.com/blog/topics/developers-practitioners/how-trigger-cloud-run-actions-bigquery-events
https://cloud.google.com/blog/topics/developers-practitioners/how-trigger-cloud-run-actions-bigquery-events
https://jahazielponce.com/algoritmos-de-busqueda/
https://jahazielponce.com/algoritmos-de-busqueda/

—_

Vi Aqui es conveniente sefialar que, en caso de requerirse, para determinar el nimero de renglones se deben realizar los siguientes
pasos:

Determinar el numero de campos: c1, ¢z, 3, ..., Cm.
Determinar el numero de datos: di,d>, d3, ..., dn.
Dividir el nimero de datos entre el niumero de campos: n/m = r, donde r es el nimero de renglones.

Por ejemplo, si tenemos 4 campos y 12 datos, entonces tendremos un total de 3 renglones. Ademas, cabe aclarar que, dentro y
fuera de este contexto, para realizar una insercion en SQL es importante que el nimero de datos sea un multiplo del niumero de campos.
De esta manera el gestor de bases de datos (o0 en este caso BQ) no notificara sobre un error de exceso o falta de datos.

vii Si intentamos codificar esta misma funcién en JavaScript (el otro lenguaje en el que se hicieron pruebas para entender el porqué de
esta situacion) podremos notar que no se obtiene el mismo error, por lo que no tienen que codificarse esta seccion y la siguiente. Por
ello, esto es mas un requerimiento de Python que una necesidad de lo aqui descrito.

vii | lenamos con guiones las listas con el Unico fin de igualar los tamafios entre las mismas y porque los guiones no se parecen a ninguna
de las cadenas de texto que se usaran mas adelante. Asi no tenderemos problemas con los procedimientos mostrados posteriormente.

x Esto se podria haber hecho todo en una Unica seccion realizando la igualacion de cada lista directamente con diferencia, pero lo
hicimos asi porque parece mas explicito para entender la naturaleza de este problema.

x Para realizar este algoritmo nos basamos mas en un analisis del problema al que nos enfrentamos. Este se encuentra descrito en los
arreglos de datos y codigo descritos a lo largo del articulo. Sin embargo, el llamarle bidsqueda por saltos viene del hecho en que
observamos varios algoritmos de busqueda para entender si lo que hicimos entraba dentro de esta categoria. En general, nos basamos
en Ponce, 2021, Wikipedia, 2022, clases universitarias de algoritmos y estructuras de datos, y analisis y disefio de algoritmos..

xi Esto posiblemente sea objeto de una demostracién por induccién matemética, pero como eso sobrepasa los objetivos de este escrito, la
dejaremos para otra ocasion.

xi Este procedimiento es el que otorga al algoritmo el nombre de busqueda por saltos, pues tener en cuenta el nimero de campos
involucrados en la insercién, nos indica el numero de elementos que se tienen que “saltar” en cada caso para encontrar qué elementos
le corresponden a los campos. Este descubrimiento se hizo después de escribir todas estas estructuras en papel y observarlas.

Xt | os pasos 5y 6 son mas evidentes en el cédigo, por eso no los vamos a sefialar.

xiv contador se usa para retomar el conteo en el numero en que quedd cada vez que se pasa al segundo loop. La necesidad de este
contador también recae en el hecho de que j = 0 cada vez que se entra al segundo loop.

@OE0

This work is under a Creative Commons
Attribution-NonCommercial-ShareAlike 2.5 Mexico license .

C-16

https://web.archive.org/web/20200716044125/http:/creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
https://web.archive.org/web/20200716044125/http:/creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
https://web.archive.org/web/20200716044125/http:/creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES
https://web.archive.org/web/20200716044125/http:/creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ES

Various Applications of loT-based Weather Monitoring Systems in the
Agricultural Sector for Bangladeshi Farmers.

Varias aplicaciones de los sistemas de monitoreo meteorolégico
basados en loT en el sector agricola para los agricultores de
Bangladesh.

Md Sofiqul Islam
mdsofiqulislamsumon66@gmail.com
Md.Saiful Islam
222198040@student.presidency.edu.bd
Jahangir Hossain Rabbi
222198040@student.presidency.edu.bd
A S M Binjer Anayet Biddut
222198040@student.presidency.edu.bd
Md.Salman Hossen
222198040@student.presidency.edu.bd

Department of Electrical and Electronics Engineering, Presidency University, Dhaka-Bangladesh

Abstract : Climate change is playing a significant role in agriculture. As an agriculturally efficient country
like Bangladesh, smart farming is needed to effectively help farmers adapt to this climate change. The main
objective of this IOT based project is to increase efficiency, especially in mushroom farming and shrimp
fishing. In both cases, smart farming requires real-time weather information from farmers. This system
enables farmers to monitor temperature, humidity, and water levels at any moment from anywhere in the
world using their smartphones. This system focuses on local farmers in different districts of Bangladesh,
where they are able to monitor the weather for their decision-making and optimize the concept of real-time
scheduling for specific food crops. Local rice farmers who are using real-time weather monitoring systems
can know the exact moment of their rains, which helps them determine the time to harvest their mature rice.
This approach will open up a new avenue for our local farmers through which they can increase their
capacity through mushroom cultivation and shrimp farming more than before, which will help boost the
economy of a country like Bangladesh a lot.

Keyword : 1oT,Esp-8266,DHT-11 Sensor, Farming-Bangladesh

1.Introduction

Most of the people of Bangladesh are very involved in agriculture, so they need to know the weather
conditions very well. Most of the farmers in Bangladesh are local farmers, and if the crops they produce
can be produced smartly, then there is a very good potential in the economic sector of Bangladesh. Good
crop production has become a big problem in Bangladesh now. Rapid urbanization and population growth
have led to climate change in Bangladesh, Holovatyy, A., 2021 [1]. As a result, the weather in Bangladesh
is now very unpredictable. In such a situation, if you want to cultivate mushrooms and shrimp, whether the
temperature and water level are constantly changing or not and whether there is a possibility of rainfall,
farmers need to know real-time information about all these things, Annika, V. O. (2023). [2]. Every year in
Bangladesh, it is seen that many farmers suffer extensive damage to their winter vegetables due to
unexpected rains during the winter. At that time, farmers claimed that they could not be on alert in advance
because they did not know whether the rain would come or not, which resulted in maximum damage to their
crops.

E-1

Shrimp farming and mushrooms are among the agricultural products exported by Bangladesh. Mushroom
and shrimp farmers in Bangladesh have not yet been able to significantly increase the effectiveness of their
farming because they have not yet implemented smart cultivation, meaning they have not yet implemented
the proper use of loT-based weather monitoring systems, .Islam M.S.,(2024) [3]. Due to excessive water
height and low water pressure, shrimp farmers in Chittagong often face the danger of many shrimp fish
dying because they are not yet familiar with the use of loT-based technology, which has resulted in their
productivity not increasing much. Also, many farmers in Bangladesh cultivate salt, and measuring water
levels is very important for this salt, and in this case, an loT-based weather monitoring system is an
acceptable system through which farmers can always be informed about the water level.

To address the climate change problem in Bangladesh, Bangladeshi farmers need to adapt very quickly to
the best weather monitoring system built on our own technology, through which they will be able to collect
real-time monitoring information and make decisions very easily. Our system is primarily designed for the
farmers of our country so that they can get daily forecasts and make informed decisions very quickly to
save their resources from being wasted[4].Our proposed system uses a variety of sensors that are
integrated and perfectly installed to measure pressure, temperature, water level, humidity in a specific area
and collect real-time data. Due to climate change, farmers in our country are worried about the weather in
the coming months. If they have a summary of the real-time data from the previous year, they can easily
use that summary to make a forecast for the next month. Since our system stores real-time data in the
cloud system, farmers can easily review the data from the previous year or month and prepare a forecast
for the next month. We have tried to make this proposed system as simple as possible so that all farmers
at the village level can use it with very little difficulty and get the proper benefits and they can be financially
successful.

The proposed system can update the farmer with accurate weather forecasts twice a day to help farmers
make informed decisions on which activities to carry out without wasting resources[5]. A similar application
was developed for greenhouse gases, where an loT weather monitoring system was created to provide
real-time data on greenhouses, updating weather conditions every moment[6]. This system stored real-time
data, such as humidity, light, and air pressure, in IBM Store cloud storage. The advanced loT weather
monitoring system reviewed weather updates every moment and automatically notified the greenhouse
manager via email if it saw any major changes in temperature, which is an excellent system that can quickly
detect damage and balance the greenhouse temperature. As technology continues to advance, modern
agricultural methods like greenhouse farming are becoming increasingly popular. These innovative
practices enable effective monitoring and control of greenhouse environments, offering valuable insights
for crop management. This can be achieved through cost-effective and low-power consumption systems,
utilizing technologies such as Arduino. These systems can connect to WiFi networks and operate on the
global internet system, facilitating the optimization of climatic conditions based on crop data[7].

2. Literature review

A literature review will focus on loT-based weather monitoring systems using Esp-8266 and various
sensors, including calibration techniques, data processing algorithms, and practical applications. It will
describe various challenges that were faced and accurate information of weather conditions that sensors
are provided. Along with power delivery, & consumption, its future fields will also be highlighted. Currently
there are many ongoing studies on loT based monitoring system and this paper will discuss its future. This
paper will also study the basics of loT based monitoring systems and will focus on its impact on various
fields like agriculture, Industry and the future potentiality in numerous sectors[8].

Current existing methods for weather monitoring mainly use analog instruments such as thermometers,
barometers, wind vanes, rain gauges to measure weather and climate changes. Most of the instruments
use very simple analog technology and instead physically record the changes and store them in a database.
This information is then transmitted to news stations and radio stations where weather reports are
provided[9].In addition, existing weather monitoring systems use heavy equipment that is difficult to
maintain and needs to be replaced frequently. Moreover, they have to be operated manually which is time

E-2

consuming. Apart from this, these machines consume a lot of power and also face a lot of problems in
maintaining the accuracy of the data and if the temperature changes, it has to be checked manually. The
data that is obtained manually is sent to the computer through the logger. Moreover, heavy winds make it
very difficult to move the equipment from one location to another and many spaces are needed. The biggest
problem to face is that it delays warning messages in case of sudden weather changes[10].

On the other hand, by this technique farmers don’t need much equipment to measure the weather
parameters. By using this technique they will aware the current situation in their farms or fields. If any bad
condition occurred they will have enough time to solve the issues . Specially the shrimp farmers will get the
temperature information in every moment which is necessary for the shrimp farming. Moreover it does not
need a huge place to place it in the farms. So it is basically more convenient for the Bangladeshi farmers
to operate and set up. So this loT based weather monitoring system will have a huge impact on the
agricultural sector in Bangladesh.

After the spread of the Internet, IOT has become a symbol of trust in various sectors, especially in the data
sector, agricultural sector as well as business organizations. loT basically means a system through which
data can be exchanged and communicated continuously without any connection of wire. One of its
purposes is to determine, observe, locate, and manage any object according to its predefined goal. And
this idea has not only increased the capabilities of the Internet several times, but has also connected people
to any object as well as among themselves. The loT framework allows us to connect the various objects
around us in a variety of ways.

The concept of IOT will stand as an emerging communication medium in the world with various everyday
objects that will ensure that the objects are connected to a microcontroller or powerful communication
device. This will ensure seamless communication between the objects themselves and with the users that
will enable Internet use. IoT aims for the Ubiquitous introduction and expansion of the internet. Through it,
we can connect electronic objects in our homes, surveillance cameras, cars, and important devices, which
increases our own security several times. Individuals, government institutions, and business organizations
analyze the data provided by loT. Can be identified and used for various purposes. Contemporary
technological advancements dictate the management and activities of various objects[11].

Daily weather monitoring affects our daily lives. These results significantly affect our various sectors,
including agriculture, industry, and construction. But the primary impact can be felt by agriculture and
industry. The weather monitoring system continuously displays the overall condition of a specific place.
Basically, based on the data provided by the sensors, it predicts the weather of a specific region through
some mathematical models. Daily weather monitoring affects our daily lives. These results significantly
affect our various sectors including agriculture, industry, construction. But the primary impact can be felt by
agriculture and industry[12]. Basically, based on the data provided by the sensors, it predicts the weather
of a particular region through some mathematical models. At present, IoT is widely used by various reputed
companies in their various canters such as the one based in Barcelona called open dot. This weather
monitoring solution uses loT technology to collect data on various topics including temperature, air
pressure, humidity, gas, water level. Basically the sensors provide the data to the user in their mobile
application and the user can access it in real time. So If our government want to plan how to increase our
agricultural productivity by 2030 they will definitely need a modern solution to solve farmers limitations. If
our government subsides heavily on the weather forecasting method like this one then our farmers can
harvest much more crop than we have now. Because farmers don’t get information in real quick to solve
the weather issues in their farms. Government should spend around 100 millions to the real time weather
forecasting like loT based weather forecasting system.

Sensors are systematically installed at different locations and they collect the weather data of that location
and display an accurate result. The main objective of this paper is to develop an effective weather
monitoring system through which accurate information of important weather parameters of any place can
be obtained and stored in the cloud. Usually sensors are connected to the environment so that they can
present real data of different parameters. And of course, as the weather changes, the parameters and data

E-3

will continue to update and show the data for that particular period[13].
By this, our farmers will have a clue what to do next for their crops
safety. For example, If this system give a data about heavy humidity
then our rice or cabbage farmers will aware about mold or bacteria l

spread in the field. According to the information they can spry pesticides Initialize the microcontroller
tO the CI‘OpS. and sensors & connect to Wi-Fi

|

Start

3.Methodology - DBl
. . . . Collect data
loT-based Weather Monitoring system is a system where using some folmiion — A ae
sensors that collect to device, process and transfer the real time | e
weather data. These sensors generally using for measuring
temperature, humidity ,air pressure and environmental factors that are fendgaendann
gSpeak Server

connected into internet either microcontroller or cloud based-
platform[14]. The collected data is transmitted wirelessly, stored in a l
database, and used for analysis. Using loT technology, this system _ Data

. o e . Useralerts <— Cloud-server —> visualization
ensures continuous monitoring, remote accessibility, and real-time database and Analytics
updates, making it an effective and common solution for weather l

forecasting, agricultural planning, and disaster management [15].

3.1Working Principle

Stop

Here the first step is the process begins initializing to the system. Then
initializing the microcontroller and sensors(like temperature, humidity, pressure)And the system
established a connection with Wi-Fi for data transmission. Collect data from the sensors that are
environmental parameters like temperature, humidity and pressure are gathered[16]. Started the parallel
process that displays weather parameters on OLED and send sensor data to thingspeak server. The
collected data shown on display then send into thingspeak server. Then sent data starting processing and
stored the data further analyzing[17]. The stored data is used for visualization, trend analysis, and predictive
weather modeling. Another step that if certain something went wrong (like over heat or humidity) alerts are
sent to users.At the last when need to stop then stop the program[18]

Fig-1
3.2All Components

loT based weather monitoring system, Some important sensors used in this project are 5V Buzzer, DTH11,
Ultrasonic sensor, PIR sensor, LCD & 12C, MQ2 sensor, Nodemcu Board, Relay Module, 5V source etc.
Below is a detailed idea about all these components.

Components Name :

1.Nodemcu (ESP-8266) 2.DHT-11 Sensor 3.Ultrasonic Sensor
4.Realy Module 5.LDR sensor 6. 5V Buzzer
7.Pair sensor 8.MQ-2 sensor 9.LCD & 12C Module

10.5V DC source

5V Buzzer

The famous 5V passive buzzer is used in endless projects with all different kinds of microcontrollers
including the Raspberry Pi and Arduino. It is great to add audio alert to electronic design. The buzzer will
push straight into a breadboard for prototyping and can also be soldered to a standard 1.6mm PCB.

|

5V Buzzer(fig-2)

DTH11 Sensor

In this project, DTH11 is used to measure temperature and humidity. Basically, this sensor is used to detect
the existence of temperature and humidity. It is a low-cost digital sensor for checking temperature and
humidity. It can be easily connected to Arduino and take temperature and humidity readings.

DTH11 Sensor(fig-3)

Ultrasonic Sensor

An ultrasonic sensor is a device that measures the distance to an object using ultrasonic sound waves. It
is a device that uses a transducer to send and receive ultrasonic pulses that relay back information about
an object’s proximity. High frequency sound waves reflect across boundaries to produce distinct echo
patterns.

Ultrasonic Sensor (fig-4)
PIR Sensor

Passive infrared sensor(PIR) is basically a motion detector sensor that detects whether any object is
moving. It is a sensor used in motion detectors such as automatically triggered light devices and security
systems that measure infrared light emitting devices in their field of view.

PIR Sensor(fig-5)

LCD & 12C Module

LCD & 12C refers to Liquid crystal display integrated with 12c communication interface that easily connect
to the internet or any kind of pcb. Its basically made for Audino based system for allowing any kind of

information get to by user.

LCD & 12C Module(fig-6)
MQ-2 Sensor

MQ-2 is a versatile gas sensor. Its capable to detect gas, alcohol, carbon monoxide, liquefied petroleum
gas, propane and smoke. Such this detect the multiple gases but it has lack of the difference between
them.

MQ-2 Sensor(fig-7)

E-6

ESP- 8266 Board

Nodemcu-8266 board design as a small, affordable development board that allows to connect with the
internet so easily via Wi-Fi with utilizing esp8266 cheap. It basically designs for Audino IDE project and
python-based project. It powerful board for this type of project.

ESP- 8266 Board(fig-8)
Relay Module

A relay module's primary benefit is its ability to control high-power circuits using a low-power signal,
effectively isolating the control circuit from the load circuit.

Relay (Fig-9)

3.3Circuit Diagram & System Working Process:

DHT11 Sensor
5v Buzzer EBEt Ultrasonic Sensor PIR Sensor
1 ‘e

Wi

L

LCD & 12C Nodemcu Board

5VDC o——

MQ2 Sensor ‘s.— — e r

e

Circuit Diagram (Fig-10)

The circuit diagram shown in the figure above shows how all the sensors are connected to the ESP8266.
This section will describe how the connections are made. First, we will connect the ground and power
connections of all these sensors (including the relay module, MQ2 sensor, LCD module, DHT-11 sensor,
5V buzzer, ultrasonic sensor, PIR sensor) to the ground and power supply of the Esp-8266. Next, we will
connect the Pair sensor, DHT-11 sensor, MQ-2 sensor, and 5V buzzer sensor to ESP8266 pin number D6,
pin number D3, pin number AQ, and pin number DO, respectively. The remaining two connection pins of the
LCD module, the SDA pin and the SCL pin, will be connected to the pins numbered D2 and D1 of the ESP-
8266, respectively. We will connect pin IN1 and pin IN2 of the relay module to pin numbers d7 and d8 of
the ESP8266 respectively. Finally, if we connect an external source of five volts to this circuit, our entire
system will receive power and run.

3.4Costs in System Design:
Table number-1 below shows the cost of building this system, including the cost of each sensor. Every
effort was made to bill the system as low as possible.

Table-1
Serial Number Sensors or parts name Cost
1. DHT-11 85 taka
2. LDR Sensor 70 taka

3. MQ-2 Sensor 110 taka
4, ESP-8266 250 taka
5. Relay Module 120 taka
6. LCD Display with Module 250 taka
7. PIR Sensor 80 taka
8. 5V Buzzer 10 taka
9. Ultrasonic Sensor 70 taka
10. 5V DC source (Battery) 250 taka
11. Connecting Wire 90 taka
12. Stand 100 taka
Total Cost : 1,485 Taka(BDT)

From table number-1 above we can see that to create this system it will take 1485 taka in Bangladeshi taka.
We can easily say that this is a very low cost system. Any rural farmer in Bangladesh can buy this system
and use it for his cultivation. Considering that the minimum income of any individual or farmer in Bangladesh
is 10,000 taka as per the government data of 2024, we can say that farmers can easily buy this system and
if the government provides this system to them for free, they will benefit even more. Since the cost of this
system is very low, the government can easily provide it to the farmers for free.

3.5System Ability in Different Weather Conditions :

This system is capable of performing in all weather conditions from high temperatures to low temperatures
and high water levels to low water levels, and it also provides an effective data in almost all cases. We
have used this system in kutubdia, a southern region of Bangladesh, and found that it is capable of providing
accurate data in high wind conditions. Not only that, this system uses a strong stand, through which it will
be able to remain stable and provide data even during storms or floods. The percentage of effective value
of this system or how it combines data is presented in the table in the results section [19].

3.6 Working progress

After all connection setup into the board then seems like to

Fig-11 Fig-12
Here we can see that when all the connections are made, the power supply needs to be turned on to see
if all the connections are successful. After turning on the power supply, we can see in the second picture
that all the connections are fine. Also the all sensors were responding very well .

3.7Notification and Dashboard

After the successful implementation of the project, readings were taken in various ways and it responded
very well. When the first measurement was taken, the temperature was 28.4 C, the humidity was
61%,pressure 300 and the water level was showing 100 because we had given more water at that time.
Again, when | went to another area, some readings were also being given there, and we captured them.
There, the temperature was showing 35 C, the humidity was 69, and the water level was 38. It was

getting real-time measurements from the Blink ID server.

3.8 Process for Create Dashboard

We have used Blynk as a software in our system through which thirty thousand messages can be
exchanged for free and through this Blynk we have created a dashboard. To create this dashboard, we will
register in the blynk software and from there click on New Project. We will select the name of our project.
In this case, we have selected the name of our project loT based weather monitoring system. Then we will
select our ESP-8266 board option and open a new control panel for each of our sensors where we will
select our desired values, for example we will create one for humidity, one for gas sensor, one for water
level and one for switching. Once our dashboard is created on the bylnk website, we will later create another
control panel on our phone in the same way with the ID number of our dashboard and connect the phone's
control panel to the dashboard we created via hotspot and upload the connected WiFi password and name
to the programming, we will be able to control our system via the phone.

‘Web Dashboard

@

Device Name «c-in

Fig-13(Dashboard) Fig-14(Phone Control Panel)

4.Result

This loT based weather monitoring system developed with our own technology has been able to get the
requested results after testing in several locations within Bangladesh, including salt farming located in
Kutubdia, Cox's Bazar. Mushroom farming located in Rangpur and shrimp farming located in Pekua are

E-10

cultivated by farmers in this region. Our farmers can benefit from using this low-cost technology, which is
presented through various graphs and tables in our results section.

4.1Salt Farming in Kutubdia, Cox’s Bazar

Most of the people of Kutubdia Upazila, located in the southern part of Bangladesh, are involved in salt
mining, through which they are achieving economic prosperity and contributing greatly to the economy of
Bangladesh. But it is often seen that in Kutubdia Upazila and some other Upazilas of Cox's Bazar district,
farmers do not get any immediate information about the water level due to not cultivating salt in a smart
manner, resulting in wasting a lot of their money on salt[20]. In that case, if they are more efficient, then
intelligent salt farming can make a huge contribution to our country's economy. Table 1 presents a sample
of data storage using our best loT weather monitoring system from a salt farm in Kutubdia.

Table 2: loT based weather station in kutubdia salt farming filed (27 Jan 2025)

Time Temperature Humidity Water level
12:00PM 22°C 50% 40
12:30PM 23°C 52% 50
1:00PM 24°C 54% 45

4.2Weather Forecast in Different location for Bangladeshi Farmers

By comparing different temperatures at different times in different regions of Bangladesh, this system will
help farmers in those regions easily understand when they can economically benefit from growing which
crops. Below are temperature charts for the months of May and June for three regions of Bangladesh,
Lakshmipur, Netrakona, and Rangpur, as shown in Figure 1 and Figure 2.

Temperature Humidity

40 80
30 75

70
20

65
10 60

1-May 1-Jun

0

B Netrakona ™ Lakshmipur B Rangpur
1-May 1-Jun

B netrakona M Lakshmipur B Rangpur

Fig -15 Fig -16

4.3System Performance Compare

Our system uses the maximum number of sensors to get accurate information. In market existing system
we did not see the use of any ultrasonic sensors, but our system has ultrasonic sensors, due to which our
system is able to easily measure the height of the water, which makes our system superior to other systems.
Table number three below shows the overall performance of each sensor in our system.

E-11

Table-3(Performance):

Sensor Name No.Test No Response Accurate value Efficiency
PIR Sensor 20 20 19 95%
Ultrasonic Sensor 20 20 18 90%
MQ-2 20 20 19 95%
Sensor

DTH11 20 20 19 95%
Sensor

By reviewing the performance of the table-3, we can say that our lIoT based weather monitoring system
works effectively compared to other existing systems in the market which will play a very important role for

the agriculture sector.

5.Discussion

loT Best Weather Monitoring System is used in agriculture, smart city, marine navigation, disaster
management, environmental and many more fields[21]. The importance of using loT based weather
monitoring system is immense.

5.1Application Of loT Based Weather Monitoring System

The following figure -3 shows where IoT based weather monitoring systems are used and a brief
description of them.

Fig-17:(Application)

Agriculture : The scope of use of weather monitoring systems in the agricultural sector is wide, from

starting shrimp farming to mushroom farming, salt farming and which crops will grow well in the
temperatures of that region, automatic notification via email when greenhouse gas temperatures change,
and much more.

Disaster Management : loT-based weather monitoring systems can also be used in disaster
management, such as providing real-time information on flash floods to data centers, so that advance
management can be taken to avoid floods.

E-12

Smart Cities : By using monitoring systems in smart cities, people in particular areas of the city will be
able to know about the situation in real time and they will be able to manage all this accordingly.

Marine Navigation : Weather monitoring systems for maritime navigation can be called life-saving
systems because through this system, weather conditions are known instantly and accordingly, sailors can
also predict them and determine their destination based on the weather.

The Internet of Things (IoT) represents a powerful engine driving the data and communication generation
industry, with its influence spreading worldwide. We have reviewed numerous technical and non-technical
works to assess the current state of scholarly discourse, employing analysis sequence procedure models
to prioritize loT research areas[22]. In today's era, many prominent industries and companies are striving
to advance this technology. It's crucial to enhance agricultural productivity, boost crop yields, and reduce
human labor through the implementation of loT techniques. 10T technology has the potential to significantly
improve the efficiency of our agricultural systems. Consequently, research on loT in agriculture is of
paramount importance[23].

5.2Cost Benefit analysis :

From Table No. 1 in the Methods section, we can see that it cost us only 1485 Bangladeshi taka to build
this system, which is much cheaper than all the existing loT based weather monitoring systems in
Bangladesh. Due to its low price, this system can be easily purchased by rural farmers in Bangladesh, such
as Kutubdia, Lakhimpur , Rangpur, Kutubdia and other regions of Bangladesh. In this case, there will be no
need for them and those who do business with this weather monitoring system to collect data from local
areas. Due to its low cost, if its use starts in one rural area of Bangladesh, then its use will gradually spread
to all rural areas of Bangladesh. Through this, mushroom cultivation and shrimp farming will be inspired in
local areas of Bangladesh and many new mushroom cultivation and shrimp farming farms will be created,
which will greatly reduce the unemployment rate in local areas.

5.3Future Implementation :

The Bangladesh government can financially support rural farmers to engage in this loT-based weather
monitoring system. In that case, the Bangladesh government can work with NGOs or create a system
through which village families can purchase this weather monitoring system through low-interest loans. For
example, the Bangladesh government can establish a large weather observation system in Kutubdia and
connect many weather observation systems through a cloud-based system that can always store real-time
information of meteorologists, which will later be useful for high-quality research work. Use machine learning
to predict future weather patterns more accurately and provide advanced insights into crop management.
Link the system with other agricultural platforms like market prices or pest control solutions. Partner with
local agricultural departments to improve the system’s outreach and impact.

6.Conclusion :

In this research, the development and testing of the loT-based weather monitoring system has been carried
out, through which we can see that it is carrying very important information for our agricultural products and
agricultural farms. By delivering its data in real time, we can see that a farm can easily and immediately
receive accurate data about its products, which can prevent product waste and increase efficiency, while
also increasing crop production. Through the effectiveness of this technology will carry an important aspect
for Bangladeshi farmers.

Through the widespread use of such systems in the future, we can bring unprecedented changes and
development to agricultural work, and it will also play a good role in raising awareness of climate change.
Although this system is very important and will benefit the farmers of our country, the system can be

E-13

improved in some other areas. The collaboration of the sensors can be done more quickly so that we can
get the data more accurately. In addition, the weather forecast period can be extended further so that our
farmers can know well in advance what the next weather will be like and can take action accordingly. And
we can look into how this system can be used on a larger scale. Our government also can do experimental
use of this system in wide variety of agriculture fields like cow farming. As in Bangladesh the cow farming
is growing day by day our farmers need to the accurate temperature in summer and winter duration. Also
this system can be further improved to the bad weather condition.

7.Reference :

1.Holovatyy, A., 2021. Development of IOT weather monitoring system based on Arduino and ESP8266 Wi-
Fi

2.Annika, V. O. (2023). Climate change and food security in sub-Saharan Africa: evolving African-based
adaptability strategies. Journal of African Studies and Sustainable Development.

3.Islam M.S., Sunny M.S., Rabbi J.H., Pritom N.U., Shaowkat M.W. (2024) Arduino Based Sun-Light
Detection, International Journal of Engineering and Advanced Technology Studies 12 (2), 30-42.

4 Bedair, H., Alghariani, M.S., Omar, E., Anibaba, Q.A., Remon, M.,Bornman, C., Kiboi, S.K., Rady, H.A.,
Salifu, A.M.A., Ghosh, S. and Guuroh, R.T., 2023. Global warming status in the African continent:
sources, challenges, policies, and future direction. International Journal of Environmental
Research, 17(3), p.45.

5.Kokulan, V., Akinremi, O.0O. and Moulin, A.P., 2022. The seasonality of nitrate and phosphorus leaching
from manure and chemical fertilizer added to a chernozemic soil in Canada (Vol. 51, No. 6, pp.
1259-1269).

6.Kodali, R. K., Rajanarayanan, S. C., & Boppana, L. (2019, December). loT-based weather monitoring and
notification system for greenhouses. In 2019 11th International Conference on Advanced
Computing (ICoAC) (pp. 342-345). IEEE.

7.Joseph, F. J. J. (2019). loT-based weather monitoring system for effective analytics. International Journal
of Engineering and Advanced Technology, 8(4), 311-315.

8.I1slam M.S., Sunny M.S., Rabbi J.R., Pritom N.U., Shaowkat M.W. (2024) Future Assessment of Low Cost
EV Automobile Market in Bangladesh, International Journal of Engineering and Advanced
Technology Studies, 12 (2), 12-29.

9.An |IOT Based Weather Monitoring System1Dhannjay Verma,lshan Choudhury,3Manish Singh, 4Abhijeet
Shukla, 5Dharendra Kumar [12345]B.Tech[12345] Electrical and Electronics, [12345] Galgotia’s
College of Engineering and Technology, Greater Noida, India

10.Internet of Things (I0T) based Weather Monitoring System artment of Electronics and Communication,
NIEIT, Mysuru Andreanna Grace Shires Department of Electronics and Communication, NIEIT,

11.A REVIEW PAPER ON ONLINE WEATHER MONITORING SYSTEM USING INTERNET OF THINGS
Muskan Choudhary*1, Prof. Shivendu Dubey*2*1Department of CSE, GGITS, Jabalpur,
India.*2Guide, Department of CSE, GGITS, Jabalpur, India.

12.Real Time Weather Monitoring System using loT M. Sreerama Murthy1, R. P. Ram Kumar1, Billa
Saikiran2*, Islavath Nagaraj2, Tejesh Annavarapu21Department of AIMLE, GRIET, Hyderabad,
Telangana, India2UG Student, Department of AIMLE, GRIET, Hyderabad, Telangana, India

E-14

13.Internet of Things (I0T) based Weather Monitoring System Girija C Department of Electronics and
Communication, NIEIT, Mysuru Andreanna Grace Shires Department of Electronics and
Communication, NIEIT, Mysuru.

14.F. Meneghello, M. Calore, D. Zucchetto, M. Polese and A. Zanella, "loT: Internet of Threats? A Survey
of Practical Security Vulnerabilities in Real lIoT Devices," in IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8182-8201, Oct. 2019. doi: 10.1109/J10T.2019.2935189

15.P. Fremantle and P. Scott, “A survey of secure middleware for the Internet of Things,” Peerd Computer
Science, vol. 3, p. e114, May 2017.

16.Y. Liu, Y. Kuang, Y. Xiao and G. Xu, "SDN-Based Data Transfer Security for Internet of Things," in IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 257-268, Feb. 2018 doi:10.1109/JI0OT.2017.2779180

17.International Journal of Advanced Research in Computer and Commu-nication Engineering
1ISO3297:2007 Certified Vol. 5, Issue 9, September 2016.

18.Jitendra Singh , Rehan Mohammed , Mradul Kankaria , Roshan Panchal, Sachin Singh , Rahul Sharma,
“Arduino Based Weather Monitoring System”, International Journal of Advanced in Management,
Technology and Engineering Sciences 3, vol. 8, 2018.

19.Shubham R. Valentia, Vaibhav R. Wankhade, Pranjali G. Wangekar,Nikhil S. Mundane. “loT Based
Weather Monitoring System using Rasp-berry Pi.” International Research Journal of Engineering
and Technology (IRJET) 1, vol. 06, 2019.

20. Jiang H, Shu H (2019) Optical remote-sensing data based research on detecting soil salinity at diferent
depth in an arid-area oasis, Xinjiang, China. Earth Sci Informatics 12(1):43-56.

21.Li, Y., Ding, Y., Li, D., & Miao, Z. (2018). Automatic carbon dioxide enrichment strategies in the
greenhouse: A review. Biosystems Engineering, 171, 101-119.

22 K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN technologies for large-scale
loT deployment”, ICT Express, vol.5, no. 1, pp. 1-7, 2019.

23.I1slam M.S., Sunny M.S., Rabbi J.R., Pritom N.U., Shaowkat M.W. (2024) Future Assessment of Low
Cost EV Automobile Market in Bangladesh, International Journal of Engineering and Advanced
Technology Studies, 12 (2), 12-29.

@OE0

Esta obra esta bajo una licencia de Creative Commons
Reconocimiento-NoComercial-Compartirigual 2.5 México.

E-15

	cover_issue_35_es_ES
	Vol. 14 Núm. 2 (2025) in
	1
	2
	3

