Estimación del esfuerzo de proyectos de software con algoritmos de aprendizaje de máquinas
DOI:
https://doi.org/10.32870/recibe.v8i1.134Palabras clave:
estimación de software, aprendizaje de máquinas, modelos de estimación, algoritmos de regresión, tamaño funcionalResumen
La estimación del esfuerzo de proyectos de software es el proceso de predecir el esfuerzo requerido para desarrollar o mantener un sistema de software. Desarrollar modelos de estimación y técnicas apropiadas es fundamental para evitar pérdidas causadas por una estimación deficiente, donde se termina invirtiendo más esfuerzo del estimado.La precisión y confiabilidad de las estimaciones desempeñan un papel muy importante en la gestión de proyectos, ya que permiten un monitoreo y control factible para garantizar que los proyectos se terminarán de acuerdo a lo planeado.Este documento presenta una comparación entre modelos de estimación tradicionales basados en modelos estadísticos y modelos generados a partir de algoritmos de regresión de aprendizaje de máquinas.Citas
”The Standish Group”, Standishgroup.com, 2019. [Online]. Available: http://standishgroup.com/. [Accessed: 21- May- 2019].
A. Abran, Software Project Estimation: The Fundamentals for Providing High Quality Information to Decision Makers, Illustrated ed., Hoboken, New Jersey: John Wiley & Sons, Inc., 2015, p. 261.
International Software Benchmarking Standards Group, ISBSG Repository R1 - Field Descriptions, Software project data, 2017.
International Function Point Users Group, Function Point Counting Practices Manual, Version 4.3.1, Measurement Manual, Jan 2010.
Project Management Institute, Inc., A Guide to the Project Management Body of Knowledge (PMBOK), 5 ed., Newtown Square, Pennsylvania USA: PMI Publishing Division, 2000, p. 596.
S. McConnell, Software Estimation: Demystifying the Black Art, Illustrated ed., the University of California: Microsoft Press, 19 Nov 2009, p. 308.
J. Tuya, I. R. Román y J. J. D. Cosín, Técnicas cuantitativas para la gestión en la ingeniería del software, Netbiblo, 2007, p. 373.
A. Idri, A. Abran, and T. M. Khoshgoftaar, “Estimating Software Project Effort by Analogy Based on Linguistic Values,” in Proceedings - International Software Metrics Symposium, Jan 2002, p. 21-30.
J. O. Rawlings, S. G. Pantula y D. A. Dickely, Applied Regression Analysis: A Research Tool, Second ed., Department of Statistics, North Carolina State University: Springer Science & Business Media, 2001, p. 660.
A. Abran, Software Benchmarking, Estimation and Quality Models Based on Functional Size with COSMIC – ISO 19761, Draft Apr 2008.
COSMIC Measurement Practice Commitee, The COSMIC Functional Size Measurement Method, Version 4.0.2, Measurement Manual, Dec 2017.
B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy, and B. Steece, Software Cost Estimation with Cocomo II with Cdrom, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.
K. Srinivasan and D. Fisher, ”Machine learning approaches to estimating software development effort,¨IEEE Transactions on Software Engineering, vol. 21, 1995, p. 126-137.
P. Pospieszny et al., An effective approach for software project effort and duration estimation with machine learning algorithms, The Journal of Systems and Software, 137 (2018), p. 184-196,
T. Mitchell, Machine learning. New York: McGraw Hill, 2017.
Linoff, G.S., Berry, M.J.A., Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. John Wiley Sons, 2011.
Cios, K., Pedrycz, W., Swiniarski, R., Kurgan, L., Data Mining A Knowledge Dis- covery Apporach. Springer Science, New York, New York, USA, 2007.
J. J. Faraway, Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Boca Raton: CRC Press, 2006, p. 345.
Han, J., Kamber, M., Pei, J., . Data Mining: Concepts and Techniques, Morgan Kaufmann, 2006.
I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed., Morgan Kaufmann, San Francisco, 2005.
IDRI, A. & ELYASSAMI, S. Applying Fuzzy ID3 Decision Tree for Software Effort Estimation.
International Journal of Computer Science Issues, 2011.
BRAGA, P. L., OLIVEIRA, A. L. I., RIBEIRO, G. H. T. & MEIRA, S. R. L. Bagging
Predictors for Estimation of Software Project Effort. In: International Joint Conference on Neural Networks, Orlando, Florida, 2007.
N. Mittas, L. Angelis, LSEbA: least squares regression and estimation by analogy in a semi- parametric model for software cost estimation, Empirical Softw. Eng. 15, 2010.
Krogh, Anders Jesper, V., Neural Network Ensembles, Cross Validation, and Active Learning.
In: Advances in Neural Information Processing Systems, 7, 1995, pp. 231-238.
”scikit-learn: machine learning in Python — scikit-learn 0.21.1 documentation”, Scikit- learn.org, 2019. [Online]. Available: https://scikit-learn.org/stable/index.html. [Accessed: 21- May- 2019].