Aplicación del internet industrial de las cosas (iot) en líneas de manufactura por proceso de moldeo por inyección de plástico.

Autores/as

DOI:

https://doi.org/10.32870/recibe.v9i2.160

Palabras clave:

Internet Industrial, Industria de moldeo por inyección de plástico, Industria 4.0

Resumen

Las revoluciones industriales han impulsado el desarrollo tecnológico, social y económico. Una de las industrias que se ha beneficiado por los avances tecnológicos es la de moldeo por inyección de plástico, que recientemente ha incorporado tecnologías de la industria 4.0. A partir de esto, el presente documento tiene como objetivo posicionarnos en el contexto de la industria de moldeo por inyección de plástico y el progreso de la industria 4.0 aplicada a sus procesos. Esta industria conlleva un proceso complejo controlado, que requiere el uso de herramientas estadísticas que muestren el comportamiento y resultados del proceso. Los datos se suelen recopilar de forma manual, con fallas u omisiones que generan problemas en diversas áreas. Se plantea entonces utilizar tecnologías de industria 4.0 para aumentar la eficiencia, descifrar tendencias y optimizar recursos y procesos, partiendo de la noción que el uso de estas tecnologías facilita la toma de decisiones acertadas en base a datos extraídos de producción, mejorando el análisis de las causas raíz de la problemática. Por medio de una revisión sistemática de literatura se encuentran casos exitosos de implementación, conceptos en el campo del Internet Industrial de las Cosas y la relación entre la industria de moldeo por inyección y la industria 4.0, con resultados utilizables como referencia para el planteamiento de nuevos proyectos y soluciones por parte de la comunidad interesada en la industria de moldeo por inyección de plástico.

Biografía del autor/a

Jesus Ivan Aguilar Lugo, Universidad Autonoma de Baja California

Ing. en Diseño.

Citas

- Ageyeva, T., Horváth, S., & Kovács, J. G. (2019). In-Mold Sensors for Injection Molding: On the Way to Industry 4.0. Sensors, 19(16), 3551. https://doi.org/10.3390/s19163551

-Balluff (2019) Mold ID. Disponible en: https://assets.balluff.com/WebBinary1/LIT_BRO_MOLD_ID_EN_H17_DRW_920549_02_000.pdf Fecha de consulta: Noviembre 2019.

- Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis framework. Computers in Industry, 101, 1-12. https://doi.org/10.1016/j.compind.2018.04.015

- Charest, M., Finn, R., & Dubay, R. (2018). Integration of artificial intelligence in an injection molding process for on-line process parameter adjustment. 2018 Annual IEEE International Systems Conference (SysCon), 1-6. https://doi.org/10.1109/SYSCON.2018.8369500

- Dănuţ‐Sorin, I. R., Opran, C. G., & Lamanna, G. (2020). Lean Manufacturing 4.0 of Polymeric Injection Molding Products. Macromolecular Symposia, 389(1), 1900109. https://doi.org/10.1002/masy.201900109

- Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or Hype? [Industry Forum]. IEEE Industrial Electronics Magazine, 8(2), 56-58. https://doi.org/10.1109/MIE.2014.2312079

- Forschungsunion, ACATECH (NATIONAL ACADEMY OF SCIENCE AND ENGINEERING). (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Disponible en: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/. Fecha de consulta: Octubre 2019.

- Gaub, H. (2016). Customization of mass-produced parts by combining injection molding and additive manufacturing with Industry 4.0 technologies. Reinforced Plastics, 60(6), 401-404. https://doi.org/10.1016/j.repl.2015.09.004

- Greer, C., Burns, M., Wollman, D., & Griffor, E. (2019). Cyber-physical systems and internet of things (N.o NIST SP 1900-202; p. NIST SP 1900-202). https://doi.org/10.6028/NIST.SP.1900-202

- Griffor, E. R., Greer, C., Wollman, D. A., & Burns, M. J. (2017). Framework for cyber-physical systems: Volume 1, overview (N.o NIST SP 1500-201; p. NIST SP 1500-201). https://doi.org/10.6028/NIST.SP.1500-201 Fecha de consulta: Octubre 2019.

- Hu, F., He, Z., Zhao, X., & Zhang, S. (2017). A novel vision-based mold monitoring system in an environment of intense vibration. Measurement Science and Technology, 28(10), 105906. https://doi.org/10.1088/1361-6501/aa8537

- Ibarra-Esquer, J., González-Navarro, F., Flores-Rios, B., Burtseva, L., & Astorga-Vargas, M. (2017). Tracking the Evolution of the Internet of Things Concept Across Different Application Domains. Sensors, 17(6), 1379. https://doi.org/10.3390/s17061379

- Industrial Internet Consortium Vocabulary Task Group in the Technology Working Group, co-chaired by Anish Karmarkar (Oracle) and Robert Martin (MITRE). “The Industrial Internet of Thing, Volume G8: Vocabulary” IIC:PUB:G8:V2.1:PB:20180822. Disponible en:

https://www.iiconsortium.org/pdf/IIC_Vocab_Technical_Report_2.1.pdf . Fecha de consulta: Octubre 2019.

- Jong, W.-R., Chen, S.-C., Wang, S.-M., Liu, S.-H., Liao, H.-L., Ting, Y.-H., & Chen, H.-T. (2017). The Implementation of Cloud Platform for Injection Molding Process. Procedia CIRP, 63, 219-223. https://doi.org/10.1016/j.procir.2017.03.117

- Kim, C.-S., & Son, S.-B. (2018). A Study on Big Data Cluster in Smart Factory using Raspberry-Pi. 2018 IEEE International Conference on Big Data (Big Data), 5360-5362. https://doi.org/10.1109/BigData.2018.8622539

- Klaus Schwab (2016), La cuarta revolución industrial, en Penguin Random House Grupo Editorial España, Disponible en: https://www.overdrive.com/search?q=111C4347-2121-4AE1-9B18-7C584195F118 . Fecha de consulta: Octubre 2019.

- Lee, H., Liau, Y., & Ryu, K. (2018). Real-time parameter optimization based on neural network for smart injection molding. IOP Conference Series: Materials Science and Engineering, 324, 012076. https://doi.org/10.1088/1757-899X/324/1/012076

- Lee, H., Ryu, K., & Cho, Y. (2017). A Framework of a Smart Injection Molding System Based on Real-time Data. Procedia Manufacturing, 11, 1004-1011. https://doi.org/10.1016/j.promfg.2017.07.206

- Li, Z., Liu, L., Barenji, A. V., & Wang, W. (2018). Cloud-based Manufacturing Blockchain: Secure Knowledge Sharing for Injection Mould Redesign. Procedia CIRP, 72, 961-966. https://doi.org/10.1016/j.procir.2018.03.004

- Lucchetta, G., Masato, D., & Sorgato, M. (2018). Optimization of mold thermal control for minimum energy consumption in injection molding of polypropylene parts. Journal of Cleaner Production, 182, 217-226. https://doi.org/10.1016/j.jclepro.2018.01.258

- Ogorodnyk, O., & Martinsen, K. (2018). Monitoring and Control for Thermoplastics Injection Molding A Review. Procedia CIRP, 67, 380-385. https://doi.org/10.1016/j.procir.2017.12.229

- Park, H. S., Phuong, D. X., & Kumar, S. (2019). AI Based Injection Molding Process for Consistent Product Quality. Procedia Manufacturing, 28, 102-106. https://doi.org/10.1016/j.promfg.2018.12.017

- Rezende, J., Cosgrove, J., Carvalho, S. & Doyle, F. (2018). A case study on the analysis of an injection moulding machine energy data sets for improving energy and production management. Eceee Industrial Summer Study Proceedings. Volume 2018-June, 2018, Pages 231-238.

- Romeo, J. (2019). Injection Molding Technology: A New Frontier?: Industry 4.0 is changing the way injection molders fabricate parts. Plastics Engineering, 75(4), 32-37. https://doi.org/10.1002/peng.20107

- Siller, H. R., Romero, D., Rabelo, R. J., & Vazquez, E. (2018). Advanced CPS Service Oriented Architecture for Smart Injection Molding and Molds 4.0. 2018 International Conference on Intelligent Systems (IS), 428-434. https://doi.org/10.1109/IS.2018.8710575

- Stankovic, J. (2014, February). Research Directions for the Internet of Things. IEEE Internet of Things Journal, 1(1), 3-9. https://doi:10.1109/JIOT.2014.2312291

- Tan, Y. S., Ng, Y. T., & Low, J. S. C. (2017). Internet-of-Things Enabled Real-time Monitoring of Energy Efficiency on Manufacturing Shop Floors. Procedia CIRP, 61, 376-381. https://doi.org/10.1016/j.procir.2016.11.242

- Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: Una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511. https://doi.org/10.1016/j.medcli.2010.01.015

- Vogel-Heuser, B., & Hess, D. (2016). Guest Editorial Industry 4.0–Prerequisites and Visions. IEEE Transactions on Automation Science and Engineering, 13(2), 411-413. https://doi.org/10.1109/TASE.2016.2523639

- Vrabič, R., Kozjek, D., & Butala, P. (2017). Knowledge elicitation for fault diagnostics in plastic injection moulding: A case for machine-to-machine communication. CIRP Annals, 66(1), 433-436. https://doi.org/10.1016/j.cirp.2017.04.001

- Yong Yin, Kathryn E. Stecke & Dongni Li (2018) The evolution of production systems from Industry 2.0 through Industry 4.0, International Journal of Production Research, 56:1-2, 848-861, DOI: 10.1080/00207543.2017.1403664

- Zhang, S., Dubay, R., & Charest, M. (2014). A principal component analysis model-based predictive controller for controlling part warpage in plastic injection molding. Expert Systems with Applications, 42(6), 2919-2927. https://doi.org/10.1016/j.eswa.2014.11.030

- Zheng R., Tanner R.I., Fan XJ. (2011) Introduction. In: Injection Molding. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-642-21263-5

Descargas

Publicado

2021-02-01

Cómo citar

Aguilar Lugo, J. I., Ibarra Esquer, J. E., & Angulo Bernal, M. (2021). Aplicación del internet industrial de las cosas (iot) en líneas de manufactura por proceso de moldeo por inyección de plástico. ReCIBE, Revista electrónica De Computación, Informática, Biomédica Y Electrónica, 9(2), C1–22. https://doi.org/10.32870/recibe.v9i2.160

Número

Sección

Computación e Informática