Metropolis-Hastings (MH): Una Perspectiva Innovadora en la Inicialización de Poblaciones
Palabras clave:
Métodos de inicialización, Algoritmos metaheurísticos, OptimizaciónResumen
En este artículo, se propone un nuevo método de inicialización de poblaciones para algoritmos metaheurísticos. En este enfoque, el conjunto inicial de soluciones iniciales se obtiene a través del muestreo de la función objetivo aplicando la técnica de Metropolis-Hastings (MH). Bajo este método, el conjunto inicial de soluciones adopta un valor cercano a los valores prominentes de la función objetivo a optimizar. A diferencia de la mayoría de los métodos de inicialización que únicamente consideran una distribución espacial, en el método, los puntos iniciales representan regiones promisorias del espacio de búsqueda, las cuales merecen ser explotadas para identificar la solución óptima global de una manera más rápida. brindando al algoritmo una convergencia más rápida y mejorando la calidad de las soluciones obtenidas. Con el objetivo de demostrar el rendimiento del método de inicialización a algoritmos metaheurísticos, éste ha sido embebido en el algoritmo de Differential Evolution (DE) clásico, y el sistema completo ha sido puesto a prueba en un conjunto representativo de funciones de benchmark extraído de diferentes conjuntos de datos. Los resultados experimentales demuestran una mejora en la rapidez de convergencia y un incremento en la calidad de las soluciones por parte del enfoque propuesto, a comparación de otros métodos similares.Citas
Birbil, Ş. İ., & Fang, S.-C. (2003). An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25(3), 263–282. https://doi.org/10.1023/A:1022452626305
Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation, 10(6), 646–657. https://doi.org/10.1109/TEVC.2006.872133
Chaveau, D., & Vandekerkhove, P. (2002). Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal. Scandinavian Journal of Statistics, 29(1), 13–29. https://doi.org/10.1111/1467-9469.00064
Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4), 327–335. https://doi.org/10.1080/00031305.1995.10476177
Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374–6384. https://doi.org/10.1016/j.eswa.2013.05.041
Cuevas, E., & Rodríguez, A. (2020). Metaheuristic Computation with MATLAB®. Chapman and Hall/CRC. https://doi.org/10.1201/9781003006312
de Castro, L. N., & Timmis, J. (n.d.). An artificial immune network for multimodal function optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 699–704. https://doi.org/10.1109/CEC.2002.1007011
Fogel D. (2009). Artificial Intelligence through Simulated Evolution. In Evolutionary Computation. IEEE. https://doi.org/10.1109/9780470544600.ch7
Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473–483. http://www.jstor.org/stable/2246094
Holland, J. H. (1984). Genetic Algorithms and Adaptation. In Adaptive Control of Ill-Defined Systems (pp. 317–333). Springer US. https://doi.org/10.1007/978-1-4684-8941-5_21
Jahn Johannes. (2007). Introduction to the Theory of Nonlinear Optimization. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-49379-2
Jingqiao Zhang, & Sanderson, A. C. (2009). JADE: Adaptive Differential Evolution With Optional External Archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958. https://doi.org/10.1109/TEVC.2009.2014613
Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer ….
Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: charged system search. Acta Mechanica, 213(3–4), 267–289. https://doi.org/10.1007/s00707-009-0270-4
Kennedy, J., & Eberhart, R. (n.d.). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
Kononova, A. V., Caraffini, F., & Bäck, T. (2021). Differential evolution outside the box. Information Sciences, 581, 587–604. https://doi.org/10.1016/j.ins.2021.09.058
Maciel C., O., Cuevas, E., Navarro, M. A., Zaldívar, D., & Hinojosa, S. (2020). Side-Blotched Lizard Algorithm: A polymorphic population approach. Applied Soft Computing, 88, 106039. https://doi.org/10.1016/j.asoc.2019.106039
Ochoa, P., Castillo, O., Melin, P., & Soria, J. (2021). Differential Evolution with Shadowed and General Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Optimal Design of Fuzzy Controllers. Axioms, 10(3), 194. https://doi.org/10.3390/axioms10030194
Ochoa, P., Castillo, O., & Soria, J. (2020). High-Speed Interval Type-2 Fuzzy System for Dynamic Crossover Parameter Adaptation in Differential Evolution and Its Application to Controller Optimization. International Journal of Fuzzy Systems, 22(2), 414–427. https://doi.org/10.1007/s40815-019-00723-w
Pan, W., Li, K., Wang, M., Wang, J., & Jiang, B. (2014). Adaptive Randomness: A New Population Initialization Method. Mathematical Problems in Engineering, 2014, 1–14. https://doi.org/10.1155/2014/975916
Qin, A. K., & Suganthan, P. N. (n.d.). Self-adaptive Differential Evolution Algorithm for Numerical Optimization. 2005 IEEE Congress on Evolutionary Computation, 1785–1791. https://doi.org/10.1109/CEC.2005.1554904
Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2007). A novel population initialization method for accelerating evolutionary algorithms. Computers & Mathematics with Applications, 53(10), 1605–1614. https://doi.org/10.1016/j.camwa.2006.07.013
Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2011). Filter modeling using gravitational search algorithm. Engineering Applications of Artificial Intelligence, 24(1), 117–122. https://doi.org/10.1016/j.engappai.2010.05.007
Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
Tanabe, R., & Fukunaga, A. (2013). Success-history based parameter adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, 71–78. https://doi.org/10.1109/CEC.2013.6557555
Tanabe, R., & Fukunaga, A. S. (2014). Improving the search performance of SHADE using linear population size reduction. 2014 IEEE Congress on Evolutionary Computation (CEC), 1658–1665. https://doi.org/10.1109/CEC.2014.6900380
Wang, H., Wu, Z., Liu, Y., Wang, J., Jiang, D., & Chen, L. (2009). Space transformation search. Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 537–544. https://doi.org/10.1145/1543834.1543907
Wen, J., Ma, H., & Zhang, X. (2016). Optimization of the occlusion strategy in visual tracking. Tsinghua Science and Technology, 21(2), 221–230. https://doi.org/10.1109/TST.2016.7442504
Yang, X. (2010). Engineering Optimization. Wiley. https://doi.org/10.1002/9780470640425
Yang, X.-S., & Deb, S. (2010). Cuckoo Search via Levy Flights.