Segmentación rápida de imágenes con múltiples características
DOI:
https://doi.org/10.32870/recibe.v13i1.358Palabras clave:
Segmentación de imagen, Algoritmo de cambio medio, Estimador de densidad del kernel (EDK)Resumen
La segmentación de características múltiples es superior a los enfoques unidimensionales en escalas de grises. El algoritmo del cambio medio (CM) se utiliza comúnmente para esta tarea. A pesar de sus interesantes resultados, el CM sigue siendo computacionalmente prohibitivo para escenarios de segmentación en los que el mapa de funciones está formado por características multidimensionales. El enfoque propuesto considera un mapa de características bidimensional que incluye el valor en escala de grises y la varianza local de cada píxel de la imagen. Para reducir el coste computacional, se modifica el algoritmo de CM clásico para que opere sobre un número menor de puntos. En tales condiciones, se diferencian dos conjuntos de elementos: datos implicados (el conjunto reducido de datos considerados en la operación CM) y datos no implicados (el resto de datos disponibles). A diferencia del CM clásico, que emplea funciones gaussianas, en nuestro enfoque el proceso de estimación del mapa de características se lleva a cabo utilizando un enfoque más preciso, como la función kernel de Epanechnikov. Una vez obtenidos los resultados del CM, se generalizan para incluir los datos no utilizados. Así, cada característica no utilizada se asigna al mismo clúster de datos utilizados más cercano. Por último, los grupos con menos características se fusionan con otros grupos vecinos. El método de segmentación propuesto se ha comparado con otros algoritmos del estado de la técnica usando de la base de datos de Berkeley. Los resultados experimentales confirman que el esquema propuesto produce imágenes segmentadas con un 50% más de calidad de percepción visual.Citas
K.S. Tan, N.A.M Isa, Color image segmentation using histogram thresholding– fuzzy c-means hybrid approach, Pattern Recognit. 44 (2011) 1–15.
H.-D. Cheng, X. Jiang, J. Wang, 2002. Color image segmentation based on homogram thresholding and region merging, Pattern Recognit 35 (2002) 373–393.
J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2002) 888–905.
Y. Tian, J. Li, S. Yu, T. Huang, Learning complementary saliency priors for foreground object segmentation in complex scenes, Int. J. Comput. Vis. 111 (2015) 153–170.
P.F. Felzenszwalb, D.P Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vis. 59 (2004) 167–181.
P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 898–916.
X. Zhang, C. Xu, M. Li, X. Sun, Sparse and low-rank coupling image segmentation model via nonconvex regularization, Int. J. Pattern Recognit. Artif. Intell. 29 (2015) 1–22.
A. Dirami, K. Hammouche, M. Diaf, P.. Siarry, Fast multilevel thresholding for image segmentation through a multiphase level set method, Signal Process. 93 (2013) 139–153.
H. Zhang, J.E. Fritts, S.A Goldman, Image segmentation evaluation: a survey of unsupervised methods, Comput. Vis. Image Underst. 110 (2008) 260–280.
M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imaging 13 (2004) 146–168.
M. Mignotte, A label field fusion Bayesian model and its penalized maximum rand estimator for image segmentation, IEEE Trans. Image Process. 19 (2010) 1610–1624.
M. Krinidis, I. Pitas, Color texture segmentation based on the modal energy of deformable surfaces, IEEE Trans. Image Process. 18 (2009) 1613–1622.
Y. Han, X.-C. Feng, G. Baciu, Variational and PCA based natural image segmentation, Pattern Recognit. 46 (2013) 1971–1984.
Z. Yu, O.C. Au, R. Zou, W. Yu, J. Tian, An adaptive unsupervised approach toward pixel clustering and color image segmentation, Pattern Recognit. 43 (2010) 1889–1906.
T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, A.K. Nandi, Significantly fast and robust fuzzy C-Means clustering algorithm based on morphological reconstruction and membership filtering, IEEE Trans. Fuzzy Syst. 26 (5) (2018) 3027–3041.
A.S. Abutaleb, Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Graph. Image Process.. 47, (1089), 22–32.
A. Brink, Thresholding of digital images using two-dimensional entropies, Pattern Recognit. 25 (1992) 803–808.
A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
A.B Ishak, Choosing parameters for Rényi and Tsallis entropies within a two-dimensional multilevel image segmentation framework, Physica A 466 (2017) 521–536.
X. Zhao, M. Turk, W. Li, K.-c Lien, G. Wang, A multilevel image thresholding segmentation algorithm based on two-dimensional K–L divergence and modified particle swarm optimization, Appl. Soft Comput. 48 (2016) 151–159.
W. Xue-guang, C. Shu-hong, An improved image segmentation algorithm based on two-dimensional Otsu method, Inform. Sci. Lett. 1 (2012) 77–83.
C. Sha, J. Hou, H. Cui, A robust 2D Otsu’s thresholding method in image segmentation, J. Vis. Commun. Image Represent. 41 (2016) 339–351.
S. Sarkar, S. Das, Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy—a differential evolution approach, IEEE Trans. Image Process. 22 (2013) 4788–4797.
A. Nakib, S. Roman, H. Oulhadj, P. Siarry, Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization, in: Proceedings of the International Conference on Engineering in Medicine and Biology Society, 2007.
A. Nakib, H. Oulhadj, P. Siarry, Image thresholding based on pareto multiobjective optimization, Eng. Appl. Artif. Intell. 23 (2010) 313–320.
X.-S. Yang, Nature-inspired Optimization AlgorithCM, Elsevier, 2014.
Y.-g. Tang, D. Liu, X.-p. Guan, Fast image segmentation based on particle swarm optimization and two-dimension otsu method, Control Decis. 22 (2007) 202–205.
X. Lei, A. Fu, Two-dimensional maximum entropy image segmentation method based on quantum-behaved particle swarm optimization algorithm, in: Proceedings of the International Conference on Natural Computation, 2008.
C. Qi, Maximum entropy for image segmentation based on an adaptive particle swarm optimization, Appl. Math. 8 (2014) 3129–3135.
X. Shen, Y. Zhang, F. Li, An improved two-dimensional entropic thresholding method based on ant colony genetic algorithm, in: Proceedings of the WRI Global Congress on Intelligent SysteCM, 2009.
H. Cheng, Y. Chen, X. Jiang, Thresholding using two-dimensional histogram and fuzzy entropy principle, IEEE Trans. Image Process. 9 (2000) 732–735.
S. Kumar, T.K. Sharma, M. Pant, A. Ray, Adaptive artificial bee colony for segmentation of CT lung images, in: Proceedings of the International Conference on Recent Advances and Future Trends in Information Technology, 2012.
S. Fengjie, W. He, F. Jieqing, 2D Otsu segmentation algorithm based on simulated annealing genetic algorithm for iced-cable images, in: Proceedings of the International Forum on Information Technology and Applications, 2009.
L. Xiao-Feng, L. Hui-Ying, Y. Ming, W. Tai-Ping, Infrared image segmentation based on AAFSA and 2D-renyi entropy threshold selection, in: Proceedings of the Joint International Conference on Artificial Intelligence and Computer Engineering and International Conference on Network and Communication Security, 2016.
R. Panda, S. Agrawal, L. Samantaray, A. Abraham, An evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniques, Appl. Soft Comput. 50 (2017) 94–108.
D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar, V. Osuna, A multilevel thresholding algorithm using electromagnetism optimization, Neurocomputing 139 (2014) 357–381.
H. Mittal, M. Saraswat, An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm, Eng. Appl. Artif. Intel. 71 (2018) 226–235.
M.P. Wand, M.C. Jones, Kernel Smoothing, Springer, 1995.
J.E. Chacón, Data-driven choice of the smoothing parametrization for kernel density estimators, Can. J. Stat. 37 (2009) 249–265.
K.S Duong, Kernel density estimation and Kernel discriminant analysis for multivariate data in R, J. Stat. Softw. 21 (2007) 1–16.
A. Gramacki, Nonparametric Kernel Density Estimation and Its Computational Aspects, Springer, 2018.
V.A. Epanechnikov, Non-parametric estimation of a multivariate probability density, Theory Probab. Appl. 14 (1969) 153–158.
Y.Z. Cheng, Mean Shift, mode seeking, and clustering, IEEE Transact. Pattern Anal. Mach. Intel. 17 (8) (1995) 790–799.
Y. Guo, A. S¸ engür, Y. Akbulut, A. Shipley, An effective color image segmentation approach using neutrosophic adaptive mean shift clustering, Measurement 119 (2018) 28–40.
G. Domingues, H. Bischof, R. Beichel, Fast 3D mean shift filter for CT images, in: Proceedings of the Scandinavian Conference on Image Analysis, Sweden, 2003, pp. 438–445.
D. Comaniciu, P. Meer, Meanshift: a robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intel. 24 (5) (2002) 603–619.
W.B. Tao, J. Liu, Unified mean shift segmentation and graph region merging algorithm for infrared ship target segmentation, Opt. Eng. 46 (2007) 12.
J.H. Park, G.S. Lee, S.Y. Park, Color image segmentation using adaptive mean shift and statistical model-based methods, Comput. Math. Appl. 57 (2009) 970–980.
Q. Li, J.S Racine, Nonparametric Econometrics: Theory and Practice, Princeton University Press, 2007 ISBN 978-0-691-12161-1.
Y. Luo, K. Zhang, Y. Chai, Y. Xiong, Muiti-parameter-setting based on data original distribution for DENCLUE optimization, IEEE Access 6 (2018) 16704–16711.
L. Xu, E. Oja, P. Kultanen, A new curve detection method: Randomized Hough transform (RHT), Pattern Recognit. Lett. 11 (5) (1990) 331–338.
M.A. Fisher, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM 24 (6) (1981) 381–395.
I. Horová, J. Kolácek ˇ , J. Zelinka, Kernel Smoothing in Matlab, World Scientific, 2012.
D.W. Scott, Scott’s rule, Wires Comput. Stat. 2 (4) (2010) 497–502.
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
S.K. Choy, T.C. Ng, C. Yu, Unsupervised fuzzy model-based image segmentation, Signal Process. 171 (2020) 107483.
N. Dhanachandra, Y.J. Chanu, An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm, Multimed. Tools Appl. (2020), https://doi.org/10.1007/s11042-020-08699-8.
C. Wu, Y. Chen, Adaptive entropy weighted picture fuzzy clustering algorithm with spatial information for image segmentation, Appl. Soft Comput. 86 (2020) 105888.
A.A. Hernandez del Rio, E. Cuevas, D. Zaldivar, Multi-level image thresholding segmentation using 2d histogram non-local means and metaheuristics algorithCM, in: D. Oliva, S. Hinojosa (Eds.), Applications of Hybrid Metaheuristic AlgorithCM for Image Processing. Studies in Computational Intelligence, 890, Springer, 2020.
B. Vinoth Kumar, S. Sabareeswaran, G. Madumitha, A decennary survey on artificial intelligence methods for image segmentation, in: R. Venkata Rao, J. Taler (Eds.), Advanced Engineering Optimization Through Intelligent Techniques. Advances in Intelligent SysteCM and Computing, 949, Springer, 2020.
M. Chouksey, R.K. Jha, R. Sharma, A fast technique for image segmentation based on two Meta-heuristic algorithCM, Multimed. Tools Appl. (2020), https://doi.org/10.1007/s11042-019-08138-3.
A. Draa, A. Bouaziz, An artificial bee colony algorithm for image contrast enhancement, Swarm Evol. Comput. 16 (2014) 69–84.
A. Draa, A. Bouaziz, An artificial bee colony algorithm for image contrast enhancement, Swarm Evol. Comput. 16 (2014) 69–84.
L.D.S. Coelho, J.G. Sauer, M. Rudek, Differential evolution optimization combined with chaotic sequences for image contrast enhancement, Chaos Sol. Fract. 42 (2009) 522–529.
C. Munteaunu, A. Rosa, Gray-scale image enhancement as an automatic process driven by evolution, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34 (2) (2004) 1992–1998.
M. Braik, A. Sheta, A. Ayesh, Particle swarm optimisation enhancement approach for improving image quality, Int. J. Innov. Comput. Appl. 1 (2) (2007) 138–145.