Aplicaciones de la Inteligencia Artificial en Microbiología Agroambiental
Palabras clave:
Inteligencia artificial; Aprendizaje Automático, Aprendizaje Profundo, Microbiología Ambiental, Agricultura, Biorremediación, Sostenibilidad AmbientalResumen
La inteligencia artificial (IA) ha pasado de ser un concepto futurista a ser una realidad que ha emergido en la última década como uno de los avances más significativos, transformándose así en una gran herramienta que ha visto un incremento en su uso en distintos campos de la ciencia y tecnología marcando un hito en el paso a una nueva revolución tecnológica. Entre estas áreas del conocimiento, las ciencias ambientales particularmente la microbiología agroambiental se ha convertido en uno de los campos donde las aplicaciones de la IA han tenido relevancia. De esta forma, esta nueva tecnología a partir de diferentes métodos como el aprendizaje automático o el aprendizaje profundo ofrece soluciones innovadoras que son aplicables para monitorear y gestionar los distintos sistemas que se pueden encontrar dentro de lo que comprende la microbiología agroambiental. Esta investigación se centró en la búsqueda de las distintas aplicaciones que puede tener la IA y que pueden ser aplicables en procesos propios de la microbiología ambiental, la agricultura y sanidad de los cultivos, la biorremediación y la sostenibilidad ambiental, todos ellos considerados parte fundamental para la comprensión de lo que es el área agroambiental. En esta investigación, se realizó la búsqueda en distintas bases de datos para encontrar la información, logrando así establecer los principios básicos para la comprensión de las herramientas de la IA y cuál es su aplicabilidad dentro de la microbiología agroambiental esta área, resaltando los beneficios de la incorporación de estas tecnologías y sus perspectivas futuras.Citas
Abia Katimbo, Rudnick, D. R., Zhang, J., Ge, Y., DeJonge, K. C., Franz, T. E., Shi, Y., Liang, W., Qiao, X., Heeren, D. M., Kabenge, I., Hope Njuki Nakabuye, & Duan, J. (2023). Evaluation of artificial intelligence algorithms with sensor data assimilation in estimating crop evapotranspiration and crop water stress index for irrigation water management. Smart Agricultural Technology, 4, 100176. https://doi.org/10.1016/j.atech.2023.100176
Ahmed, A., He, P., He, P., Wu, Y., He, Y., & Munir, S. (2023). Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environment International, 173, 107819. https://doi.org/10.1016/j.envint.2023.107819
Aida, H., Hashizume, T., Kazuha Ashino, & Ying, B.-W. (2022). Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity. ELife, 11. https://doi.org/10.7554/eLife.76846
Ali, T., Ahmed, S., & Aslam, M. (2023). Artificial intelligence for antimicrobial resistance prediction: Challenges and opportunities towards practical implementation. Antibiotics (Basel, Switzerland), 12(3). https://doi.org/10.3390/antibiotics12030523
Asala Mahajna, Dinkla, I. J. T., Euverink, J. W., Keesman, K. J., & Bayu Jayawardhana. (2022). Clean and safe drinking water systems via metagenomics data and artificial intelligence: State-of-the-art and future perspective. Frontiers in Microbiology, 13, 832452. https://doi.org/10.3389/fmicb.2022.832452
Atoosa Haghighizadeh, Rajabi, O., Arman Nezarat, Zahra Hajyani, Haghmohammadi, M., Soheila Hedayatikhah, Soheila Delnabi Asl, & Ali Aghababai Beni. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777
Bhardwaj, A., Kishore, S., & Pandey, D. K. (2022). Artificial intelligence in biological sciences. Life (Basel, Switzerland), 12(9). https://doi.org/10.3390/life12091430
C.H. Pérez-Beltrán, Robles, A. D., Rodriguez, N. A., F. Ortega-Gavilán, & A.M. Jiménez-Carvelo. (2024). Artificial intelligence and water quality: From drinking water to wastewater. TrAC Trends in Analytical Chemistry, 172, 117597. https://doi.org/10.1016/j.trac.2024.117597
Cai, D., Aziz, G., Sarwar, S., Majid Ibrahim Alsaggaf, & Sinha, A. (2024). Applicability of denoising-based artificial intelligence to forecast the environmental externalities. Geoscience Frontiers, 15(3), 101740. https://doi.org/10.1016/j.gsf.2023.101740
Chaudhary, B., & Kumar, V. (2022). Emerging technological frameworks for the sustainable agriculture and environmental management. Sustainable Horizons, 3, 100026. https://doi.org/10.1016/j.horiz.2022.100026
Chowdhury, M., Alejo Martínez-Sansigre, Mole, M., Alonso-Peleato, E., Nadiia Basos, Jose Manuel Blanco, Ramirez-Nicolas, M., Caballero, I., & Ignacio. (2024). AI-driven remote sensing enhances Mediterranean seagrass monitoring and conservation to combat climate change and anthropogenic impacts. Scientific Reports, 14(1), 8360. https://doi.org/10.1038/s41598-024-59091-7
Chu, E. W., & Karr, J. R. (2017). Environmental impact: Concept, consequences, measurement ☆. In Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.02380-3
Danijela Šantić, Kasia Piwosz, Frano Matić, Ana Vrdoljak Tomaš, Jasna Arapov, Jason Lawrence Dean, Mladen Šolić, Koblížek, M., Grozdan Kušpilić, & Stefanija Šestanović. (2021). Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea. Scientific Reports, 11(1), 11186. https://doi.org/10.1038/s41598-021-90863-7
Diaz-Gonzalez, F. A., Vuelvas, J., Correa, C. A., Vallejo, V. E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators – Review. Ecological Indicators, 135, 108517. https://doi.org/10.1016/j.ecolind.2021.108517
Ding, H., Tian, J., Yu, W., Wilson, D. I., Young, B. R., Cui, X., Xin, X., Wang, Z., & Li, W. (2023). The application of artificial intelligence and big data in the food industry. Foods (Basel, Switzerland), 12(24). https://doi.org/10.3390/foods12244511
Divyanshu Tirkey, Kshitiz Kumar Singh, & Tripathi, S. (2023). Performance analysis of AI-based solutions for crop disease identification, detection, and classification. Smart Agricultural Technology, 5, 100238. https://doi.org/10.1016/j.atech.2023.100238
Dmitrii Shadrin, Mariia Pukalchik, Ekaterina Kovaleva, & Fedorov, M. (2020). Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicology and Environmental Safety, 194, 110410. https://doi.org/10.1016/j.ecoenv.2020.110410
Egli, A., J Schrenzel, & G Greub. (2020). Digital microbiology. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 26(10), 1324–1331. https://doi.org/10.1016/j.cmi.2020.06.023
El, A., Mandi, L., Aya Kammoun, Naaila Ouazzani, Monga, O., & Moulay Lhassan Hbid. (2023). Artificial intelligence and wastewater treatment: A global scientific perspective through text mining. Water, 15(19), 3487. https://doi.org/10.3390/w15193487
El-Metwally, M. M., Abdel-Fattah, G. M., Al-Otibi, F. O., Dina K.H.EL. Khatieb, Helmy, Y. A., Mohammed, Y. M. M., & Saber, W. I. A. (2023). Application of artificial neural networks for enhancing Aspergillus flavipes lipase synthesis for green biodiesel production. Heliyon, 9(9), e20063. https://doi.org/10.1016/j.heliyon.2023.e20063
Emmanuel Kwame Nti, Samuel Jerry Cobbina, Eunice Efua Attafuah, Lydia Dziedzorm Senanu, Amenyeku, G., Michael Amoah Gyan, Forson, D., & Safo, A.-R. (2023). Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon, 9(7), e18170. https://doi.org/10.1016/j.heliyon.2023.e18170
Fang, B., Yu, J., Chen, Z., Osman, A. I., Farghali, M., Ihara, I., Hamza, E. H., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence for waste management in smart cities: a review. Environmental Chemistry Letters, 1–31. https://doi.org/10.1007/s10311-023-01604-3
Francisco Castillo Díaz. (2022). Cinco aplicaciones de la inteligencia artificial en agricultura. In Plataforma Tierra.
Ghannam, R. B., & Techtmann, S. M. (2021). Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Computational and Structural Biotechnology Journal, 19, 1092–1107. https://doi.org/10.1016/j.csbj.2021.01.028
Gianni Fenu, & Francesca Maridina Malloci. (2021). Forecasting plant and crop disease: An explorative study on current algorithms. Big Data and Cognitive Computing, 5(1), 2. https://doi.org/10.3390/bdcc5010002
Goodswen, S. J., Barratt, J. L. N., Kennedy, P. J., Kaufer, A., Calarco, L., & Ellis, J. T. (2021). Machine learning and applications in microbiology. FEMS Microbiology Reviews, 45(5). https://doi.org/10.1093/femsre/fuab015
Guduru Dhanush, Khatri, N., Kumar, S., & Praveen Kumar Shukla. (2023). A comprehensive review of machine vision systems and artificial intelligence algorithms for the detection and harvesting of agricultural produce. Scientific African, 21, e01798. https://doi.org/10.1016/j.sciaf.2023.e01798
Gupta, A., Gupta, R., & Ram Lakhan Singh. (2017). Microbes and environment. In Principles and Applications of Environmental Biotechnology for a Sustainable Future (pp. 43–84). Springer Singapore. https://doi.org/10.1007/978-981-10-1866-4_3
Hayati, R., Agus Arip Munawar, Endang Lukitaningsih, Nanda Earlia, Taufiq Karma, & Rinaldi Idroes. (2024). Combination of PCA with LDA and SVM classifiers: A model for determining the geographical origin of coconut in the coastal plantation, Aceh Province, Indonesia. Case Studies in Chemical and Environmental Engineering, 9, 100552. https://doi.org/10.1016/j.cscee.2023.100552
Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., & Heimo Müller. (2023). AI for life: Trends in artificial intelligence for biotechnology. New Biotechnology, 74, 16–24. https://doi.org/10.1016/j.nbt.2023.02.001
Holzinger, A., Saranti, A., Alessa Angerschmid, Carl Orge Retzlaff, Gronauer, A., Vladimir Pejakovic, Medel-Jimenez, F., Krexner, T., Gollob, C., & Stampfer, K. (2022). Digital transformation in smart farm and forest operations needs human-centered AI: Challenges and future directions. Sensors, 22(8), 3043. https://doi.org/10.3390/s22083043
Huffaker, R., Muñoz-Carpena, R., & Migliaccio, K. W. (2024). Sensor records can be used to forecast complex soil moisture dynamics with symbiosis of empirical nonlinear dynamics and echo state neural network AI. Computers and Electronics in Agriculture, 222, 109031. https://doi.org/10.1016/j.compag.2024.109031
Ihsan, A., Khairul Muttaqin, Rahmatul Fajri, Mursyidah Mursyidah, & Islam. (2023). Innovative bacterial colony detection: Leveraging multi-feature selection with the improved salp swarm algorithm. Journal of Imaging, 9(12), 263. https://doi.org/10.3390/jimaging9120263
Innocent Kutyauripo, Munyaradzi Rushambwa, & Lyndah Chiwazi. (2023). Artificial intelligence applications in the agrifood sectors. Journal of Agriculture and Food Research, 11, 100502. https://doi.org/10.1016/j.jafr.2023.100502
Jafar, A., Bibi, N., Rizwan Ali Naqvi, Abolghasem Sadeghi-Niaraki, & Jeong, D. (2024). Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations. Frontiers in Plant Science, 15, 1356260. https://doi.org/10.3389/fpls.2024.1356260
Jagadeesh Kumar Janga, Reddy, K. R., & K.V.N.S. Raviteja. (2023). Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review. Chemosphere, 345, 140476. https://doi.org/10.1016/j.chemosphere.2023.140476
James, Mary Krystelle Catacutan, Aurelie Mawart, Hasan, A., & Dias, J. (2022). Interfacing machine learning and microbial omics: A promising means to address environmental challenges. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.851450
Javaid, M., Haleem, A., Ibrahim Haleem Khan, & Suman, R. (2023). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001
Jiang, Y., Luo, J., Huang, D., Liu, Y., & Li, D. (2022). Machine learning advances in microbiology: A review of methods and applications. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.925454
Jonak, M., Mucha, J., Jezek, S., Kovac, D., & Kornel Cziria. (2024). SPAGRI-AI: Smart precision agriculture dataset of aerial images at different heights for crop and weed detection using super-resolution. Agricultural Systems, 216, 103876. https://doi.org/10.1016/j.agsy.2024.103876
Kapur, R. (2019). Environmental microbiology and components of the environment.
Kobra Salimiyan rizi, & Ashrafi, A. (2023). Biosensors, mechatronics, & microfluidics for early detection & monitoring of microbial corrosion: A comprehensive critical review. Results in Materials, 18, 100402. https://doi.org/10.1016/j.rinma.2023.100402
Komi Mensah Agboka, Henri, Abdel-Rahman, E. M., Odindi, J., Onisimo Mutanga, & Saliou Niassy. (2024). Leveraging computational intelligence to identify and map suitable sites for scaling up augmentative biological control of cereal crop pests. Biological Control, 190, 105459. https://doi.org/10.1016/j.biocontrol.2024.105459
Krenn, M., Pollice, R., Si Yue Guo, Matteo Aldeghi, Cervera-Lierta, A., Friederich, P., Gabriel, Florian Häse, Jinich, A., Nigam, A., Yao, Z., & Alán Aspuru-Guzik. (2022). On scientific understanding with artificial intelligence. Nature Reviews Physics, 4(12), 761–769. https://doi.org/10.1038/s42254-022-00518-3
Kumar, R., Yadav, G., Kuddus, M., Ghulam Md Ashraf, & Singh, R. (2023). Unlocking the microbial studies through computational approaches: how far have we reached? Environmental Science and Pollution Research, 30(17), 48929–48947. https://doi.org/10.1007/s11356-023-26220-0
Liang, Q., Bible, P. W., Liu, Y., Zou, B., & Wei, L. (2020). DeepMicrobes: taxonomic classification for metagenomics with deep learning. NAR Genomics and Bioinformatics, 2(1). https://doi.org/10.1093/nargab/lqaa009
Lu, Y., Lu, X., Zheng, L., Sun, M., Chen, S., Chen, B., Wang, T., Yang, J., & Chunli Lv. (2024). Application of multimodal transformer model in intelligent agricultural disease detection and question-answering systems. Plants, 13(7), 972. https://doi.org/10.3390/plants13070972
Mana, A. A., A. Allouhi, A. Hamrani, Rehman, S., I. el Jamaoui, & K. Jayachandran. (2024). Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agricultural Technology, 7, 100416. https://doi.org/10.1016/j.atech.2024.100416
Marios Vasileiou, Leonidas Sotirios Kyrgiakos, Kleisiari, C., Georgios Kleftodimos, Vlontzos, G., Hatem Belhouchette, & Pardalos, P. M. (2024). Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning. Crop Protection, 176, 106522. https://doi.org/10.1016/j.cropro.2023.106522
Matthew Ndubuisi Abonyi, Joseph Tagbo Nwabanne, Paschal Enyinnaya Ohale, Emmanuel Chinagorom Nwadike, Igbonekwu, L. I., Monday Morgan Chukwu, & Emeka Michael Madiebo. (2023). Application of RSM and ANFIS in the optimal parameter evaluation for crude oil degradation in contaminated water amended with PES. Case Studies in Chemical and Environmental Engineering, 8, 100483. https://doi.org/10.1016/j.cscee.2023.100483
Mey, F., Clauwaert, J., Kirsten Van Huffel, Willem Waegeman, & Marjan De Mey. (2021). Improving the performance of machine learning models for biotechnology: The quest for deus ex machina. Biotechnology Advances, 53, 107858. https://doi.org/10.1016/j.biotechadv.2021.107858
Miller, T., Grzegorz Mikiciuk, Kisiel, A., Małgorzata Mikiciuk, Paliwoda, D., Sas-Paszt, L., Cembrowska-Lech, D., Krzemińska, A., Agnieszka Kozioł, & Brysiewicz, A. (2023). Machine learning approaches for forecasting the best microbial strains to alleviate drought impact in agriculture. Agriculture, 13(8), 1622. https://doi.org/10.3390/agriculture13081622
Molik, D. C., Tomlinson, D., Davitt, S., Morgan, E. L., Sisk, M., Roche, B., Meyers, N., & Pfrender, M. E. (2021). Combining natural language processing and metabarcoding to reveal pathogen-environment associations. PLoS Neglected Tropical Diseases, 15(4), e0008755. https://doi.org/10.1371/journal.pntd.0008755
Muhammad Awais, Syed, Zhang, H., Li, L., Zhang, W., Awwad, F. A., Ismail, E. A. A., M Ijaz Khan, Raghavan, V., & Hu, J. (2023). AI and machine learning for soil analysis: an assessment of sustainable agricultural practices. Bioresources and Bioprocessing, 10(1), 90. https://doi.org/10.1186/s40643-023-00710-y
Muhammad, Wang, S., Wang, J., Ahmar, S., Saeed, S., Shahid Ullah Khan, Xu, X., Chen, H., Javaid Akhter Bhat, & Feng, X. (2022). Applications of artificial intelligence in climate-resilient smart-crop breeding. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911156
Mukhamediev, R. I., Popova, Y., Kuchin, Y., Zaitseva, E., Almas Kalimoldayev, Adilkhan Symagulov, Vitaly Levashenko, Farida Abdoldina, Viktors Gopejenko, Kirill Yakunin, Muhamedijeva, E., & Yelis, M. (2022). Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics, 10(15), 2552. https://doi.org/10.3390/math10152552
Nabwire, S., Suh, H.-K., Kim, M. S., Baek, I., & Cho, B.-K. (2021). Review: Application of artificial intelligence in phenomics. Sensors, 21(13), 4363. https://doi.org/10.3390/s21134363
Noé Manuel Montaño, Sandoval, A., Camargo, S., & Sánchez, J. (2010). Los microorganismos: pequeños gigantes. Elementos: Ciencia Y Cultura, 17, 15–23.
Oscar Leonardo García-Navarrete, Correa-Guimaraes, A., & Luis Manuel Navas-Gracia. (2024). Application of convolutional neural networks in weed detection and identification: A systematic review. Agriculture, 14(4), 568. https://doi.org/10.3390/agriculture14040568
Peyman Namadi, & Deng, Z. (2023). Deep learning-based ensemble modeling of Vibrio parahaemolyticus concentration in marine environment. Environmental Monitoring and Assessment, 195(1), 229. https://doi.org/10.1007/s10661-022-10836-9
Pichler, M., & Hartig, F. (2023). Machine learning and deep learning—A review for ecologists. Methods in Ecology and Evolution, 14(4), 994–1016. https://doi.org/10.1111/2041-210X.14061
Ricardo Hernández Medina, Kutuzova, S., Knud Nor Nielsen, Johansen, J., Lars Hestbjerg Hansen, Nielsen, M., & Rasmussen, S. (2022). Machine learning and deep learning applications in microbiome research. ISME Communications, 2(1). https://doi.org/10.1038/s43705-022-00182-9
Robinson, S. L. (2022). Artificial intelligence for microbial biotechnology: beyond the hype. Microbial Biotechnology, 15(1), 65–69. https://doi.org/10.1111/1751-7915.13943
Roy, W., Ying, D., Hui Yi Leong, Kuan Shiong Khoo, Pau Loke Show, & Kit Wayne Chew. (2023). Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Bioengineered, 14(1). https://doi.org/10.1080/21655979.2023.2244232
Rupshikha Patowary, Devi, A., & Mukherjee, A. K. (2023). Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. Environmental Science and Pollution Research, 30(30), 74459–74484. https://doi.org/10.1007/s11356-023-27698-4
Salgado, E. M., Esteves, A. F., Gonçalves, A. L., & Pires, J. C. M. (2023). Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks. Environmental Research, 231, 116076. https://doi.org/10.1016/j.envres.2023.116076
Seyed Mostafa Biazar, Shehadeh, H. A., Mohammad Ali Ghorbani, Golmar Golmohammadi, & Saha, A. (2024). Soil temperature forecasting using a hybrid artificial neural network in Florida subtropical grazinglands agro-ecosystems. Scientific Reports, 14(1), 1535. https://doi.org/10.1038/s41598-023-48025-4
Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial intelligence: Definition and background (pp. 15–41). https://doi.org/10.1007/978-3-031-21448-6_2
SHEIKH, M., Farooq IQRA, Hamadani AMBREEN, PRAVIN, K. A., Manzoor IKRA, & Yong Suk CHUNG. (2023). Integrating artificial intelligence and high-throughput phenotyping for crop improvement. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.10.019
Shelke, Y. P., Badge, A. K., & Bankar, N. J. (2023). Applications of artificial intelligence in microbial diagnosis. Cureus, 15(11), e49366. https://doi.org/10.7759/cureus.49366
Soma Safeer, Pandey, R. P., Rehman, B., Safdar, T., Ahmad, I., Hasan, S. W., & Ullah, A. (2022). A review of artificial intelligence in water purification and wastewater treatment: Recent advancements. Journal of Water Process Engineering, 49, 102974. https://doi.org/10.1016/j.jwpe.2022.102974
Spyridon Mourtzinis, Esker, P. D., Specht, J. E., & Conley, S. P. (2021). Advancing agricultural research using machine learning algorithms. Scientific Reports, 11(1), 17879. https://doi.org/10.1038/s41598-021-97380-7
Staša Puškarić, Mateo Sokač, Živana Ninčević, Danijela Šantić, Skejić, S., Tomislav Džoić, Prelesnik, H., & Knut Yngve Børsheim. (2024). Extracted spectral signatures from the water column as a tool for the prediction of the structure of a marine microbial community. Journal of Marine Science and Engineering, 12(2), 286. https://doi.org/10.3390/jmse12020286
Sun, R., Tu, Z., Fan, L., Qiao, Z., Liu, X., Hu, S., Zheng, G., Wu, Y., Wang, R., & Mi, X. (2020). The correlation analyses of bacterial community composition and spatial factors between freshwater and sediment in Poyang Lake wetland by using artificial neural network (ANN) modeling. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology], 51(3), 1191–1207. https://doi.org/10.1007/s42770-020-00285-2
Sun, Z., Sandoval, L., Crystal-Ornelas, R., S. Mostafa Mousavi, Wang, J., Lin, C., Cristea, N., Tong, D., Wendy Hawley Carande, Ma, X., Rao, Y., Bednar, J. A., Tan, A., Wang, J., Sanjay Purushotham, Gill, T. E., Chastang, J., Howard, D., Holt, B., & Chandana Gangodagamage. (2022). A review of earth artificial intelligence. Computers & Geosciences, 159, 105034. https://doi.org/10.1016/j.cageo.2022.105034
Terence, S., & Geethanjali Purushothaman. (2020). Systematic review of Internet of Things in smart farming. Transactions on Emerging Telecommunications Technologies, 31(6). https://doi.org/10.1002/ett.3958
Ubina, N. A., Lan, H.-Y., Cheng, S.-C., Chang, C.-C., Lin, S.-S., Zhang, K.-X., Lu, H.-Y., Cheng, C.-Y., & Hsieh, Y.-Z. (2023). Digital twin-based intelligent fish farming with Artificial Intelligence Internet of Things (AIoT). Smart Agricultural Technology, 5, 100285. https://doi.org/10.1016/j.atech.2023.100285
Vaida Bačiulienė, Bilan, Y., Navickas, V., & Lubomír Civín. (2023). The aspects of artificial intelligence in different phases of the food value and supply chain. Foods (Basel, Switzerland), 12(8). https://doi.org/10.3390/foods12081654
Wahab, A., Muhammad, M., Ullah, S., Abdi, G., Ghulam Mujtaba Shah, Zaman, W., & Ayaz, A. (2024). Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Science of the Total Environment, 926, 171862. https://doi.org/10.1016/j.scitotenv.2024.171862
Walsh, C., Elías Stallard-Olivera, & Fierer, N. (2024). Nine (not so simple) steps: a practical guide to using machine learning in microbial ecology. MBio, 15(2). https://doi.org/10.1128/mbio.02050-23
Wang, J., Zhen, J., Hu, W., Chen, S., Lizaga, I., Mojtaba Zeraatpisheh, & Yang, X. (2023). Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research, 11(3), 429–454. https://doi.org/10.1016/j.iswcr.2023.03.002
Wu, J., & Zhao, F. (2023). Machine learning: An effective technical method for future use in assessing the effectiveness of phosphorus-dissolving microbial agroremediation. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1189166
Xaimarie Hernández-Cruz, Villalobos, J. R., Runger, G., & Neal, G. (2023). Building an intelligent system to identify trends in agricultural markets. Journal of Cleaner Production, 425, 138956. https://doi.org/10.1016/j.jclepro.2023.138956
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., & Roepman, R. (2021). Artificial intelligence: A powerful paradigm for scientific research. Innovation (Cambridge (Mass.)), 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179
Zhang, J., Li, C., Yin, Y., Zhang, J., & Marcin Grzegorzek. (2023). Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Artificial Intelligence Review, 56(2), 1013–1070. https://doi.org/10.1007/s10462-022-10192-7
Zhang, Y., Zhang, D., & Zhang, Z. (2023). A critical review on artificial Intelligence—Based microplastics imaging technology: Recent advances, hot-spots and challenges. International Journal of Environmental Research and Public Health, 20(2), 1150. https://doi.org/10.3390/ijerph20021150
Zhao, L., Walkowiak, S., & Dilantha, G. (2023). Artificial intelligence: A promising tool in exploring the phytomicrobiome in managing disease and promoting plant health. Plants, 12(9), 1852. https://doi.org/10.3390/plants12091852
Zou, H., Alexandros Sopasakis, Maillard, F., Karlsson, E., Duljas, J., Silwer, S., Ohlsson, P., & Hammer, E. C. (2024). Bacterial community characterization by deep learning aided image analysis in soil chips. Ecological Informatics, 81, 102562. https://doi.org/10.1016/j.ecoinf.2024.102562