Análisis de Métodos de Medición de Complejidad de Imagen - Image Complexity Measurement Methods: A Survey

Autores/as

  • Luis Madrid Herrera Instituto Tecnológico de Chihuahua
  • Mario Ignacio Chacón Murguía Instituto Tecnológico de Chihuahua
  • Juan Alberto Ramírez Quintana Instituto Tecnológico de Chihuahua

DOI:

https://doi.org/10.32870/recibe.v7i2.99

Palabras clave:

Image Complexity, Visual Complexity, Image Complexity Applications, Eye Tracking, EEG, MEG

Resumen

La complejidad de imágenes ha sido estudiada con la finalidad proponer algoritmos computacionales que puedan estimarla simulando el criterio humano, para su aplicación en diversas áreas de procesamiento de imágenes. En este artículo se presenta un estudio de los métodos para determinar la complejidad de imágenes publicados recientemente, se realiza una clasificación basada en las características utilizadas para determinar la complejidad de una imagen y se describen brevemente. En total se analizaron 28 artículos desde el año 2005 a la actualidad, donde se encontraron 34 métodos, los cuales están basados en enfoques computacionales y enfoques humanos. Las categorías en las que se clasifican son: información de bordes, información del color y/o intensidad, grado de compresión, combinado, criterio humano y reacción humana. También, se dan a conocer las bases de datos utilizadas para evaluar los métodos de medición. Por último, se realiza un análisis de la cantidad de métodos que se encuentran en cada categoría, características más utilizadas, cantidad de métodos que se publicaron por año y sus aplicaciones. Abstract. Image complexity has been studied with the purpose to propose computational algorithms that may simulate the human behavior for applications in diverse image processing areas. This paper presents a survey of recently published image complexity methods. The paper describes a classification based on the used characteristics to determine image complexity followed by a brief explanation. 28 papers from 2005 to 2018 were analyzed. From this analysis, 34 methods were determined. These methods are based on computational and human approaches. The classification categories are edge information, color and/or intensity information, level of compression, combined, human criterion, and human reaction. The paper also describes the datasets commonly used to evaluate the methods. Finally, it is performed an analysis of the methods in each category, main used characteristics, amount of methods published by year and their applications. Keywords: Image Complexity, Visual Complexity, Image Complexity Applications, Eye Tracking, EEG, MEG.

Biografía del autor/a

Luis Madrid Herrera, Instituto Tecnológico de Chihuahua

Obtuvo el grado de Ingeniero en Mecatrónica del Instituto Tecnológico Superior de Nuevo Casas Grandes en 2015 y el grado de Maestro en Ciencias en Ingeniería Electrónica del Instituto Tecnológico de Chihuahua en 2018. Actualmente, es estudiante de Doctorado en Ciencias en Ingeniería Electrónica del Instituto Tecnológico de Chihuahua. Su investigación es en el área de procesamiento digital de señales e imágenes, enfocado a complejidad de imágenes e interfaces cerebro computadora.

Mario Ignacio Chacón Murguía, Instituto Tecnológico de Chihuahua

Obtuvo el grado de Ingeniero Industrial en Electrónica, 1982, y el grado de Maestro en Ciencias en Ingeniería Electrónica, 1985 del Instituto Tecnológico de Chihuahua, México, y el grado de Doctor en Ciencias, 1998, de la Universidad Estatal de Nuevo México, EEUU. Ha desarrollado varios proyectos para varias compañías. Actualmente trabaja como Profesor Investigador en el Instituto Tecnológico de Chihuahua. Ha publicado más de 175 trabajos y publicado 3 libros. Su investigación actual incluye Visión por Computadora y procesamiento de imágenes y señales usando Inteligencia Computacional. El Dr. Chacón es miembro Senior de la IEEE, y miembro de las sociedades IEEE; Inteligencia computacional, Procesamiento Digital de Señales y Miembro del SNI en México.

Juan Alberto Ramírez Quintana, Instituto Tecnológico de Chihuahua

Recibió los grados de  ingeniero (2004), maestría (2007) y doctorado (2014) en ingeniería electrónica del Instituto Tecnológico de Chihuahua, México. Actualmente trabaja como profesor-investigador en el Instituto Tecnológico de Chihuahua. Sus áreas de interés son visión por computadora, procesamiento de señales, percepción visual, inteligencia computacional. El Dr. Ramírez es miembro del Sistema Nacional de Investigadores de México.

Citas

Bonev, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze behavior? Pattern Recognition Letters, 34(7), 723–730. http://doi.org/10.1016/j.patrec.2012.05.007

Bonin, P., Peereman, R., Malardier, N., Méot, A., & Chalard, M. (2002). Pictures and norms for psycholinguistic studies. Recuperado el 2 de mayo de 2018, a partir de http://leadserv.u-bourgogne.fr/bases/pictures/

Bruce, N. D. B., Bruce, N. D. B., Tsotsos, J. K., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information theoretic approach. Journal of Vision, 9(2009), 1–24. http://doi.org/10.1167/9.3.5.Introduction

Canny, J. (1986). A computational approach to edge detection. IEEE transactions on pattern analysis and machine intelligence, 8(6), 679–698. http://doi.org/10.1109/TPAMI.1986.4767851

Cardaci, M., Di Gesù, V., Petrou, M., & Tabacchi, M. E. (2009). A fuzzy approach to the evaluation of image complexity. Fuzzy Sets and Systems, 160(10), 1474–1484. http://doi.org/10.1016/j.fss.2008.11.017

Cavalcante, A., Mansouri, A., Kacha, L., Barros, A. K., Takeuchi, Y., Matsumoto, N., & Ohnishi, N. (2014). Measuring streetscape complexity based on the statistics of local contrast and spatial frequency. PLoS ONE, 9(2), 1–13. http://doi.org/10.1371/journal.pone.0087097

Chacón, M. I., Aguilar D., L. E., & Delgado S., A. (2002). Fuzzy adaptive edge definition based on the complexity of the image. En IEEE International Conference on Fuzzy Systems (Vol. 2, pp. 675–678). http://doi.org/10.1109/FUZZ.2001.1009045

Chacón, M. I., Corral S., A. D., & Sandoval R., R. (2007). A Fuzzy Approach on Image Complexity Measure. Computación y Sistemas, 10(3), 268–284. Recuperado a partir de http://www.scielo.org.mx/pdf/cys/v10n3/v10n3a6.pdf

Chandler, D. M. (2010). Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1), 1–21. http://doi.org/10.1117/1.3267105

Chen, Y.-Q., Duan, J., Zhu, Y., Qian, X.-F., & Xiao, B. (2015). Research on the image complexity based on neural network. En Proceedings of the 2015 International Conference on Machine Learning and Cybernetics (pp. 295–300).

Chikhman, V., Bondarko, V., Danilova, M., Goluzina, A., & Shelepin, Y. (2012). Complexity of images: experimental and computational estimates compared. Perception, 41(6), 631–647. http://doi.org/10.1068/p6987

Cho, H., Kang, M. K., Ahn, S., Kwon, M., Yoon, K. J., Kim, K., & Jun, S. C. (2016). Cortical responses and shape complexity of stereoscopic image - A simultaneous EEG/MEG study. NeuroSignals, 24(1), 102–112. http://doi.org/10.1159/000442617

Ciocca, G., Corchs, S., & Gasparini, F. (2015). Complexity Perception of Texture Images. En Springer International Publishing Switzerland 2015 (Vol. 9281, pp. 119–126). http://doi.org/10.1007/978-3-319-23222-5

Comaniciu, D., & Meer, P. (2002). Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 1–18. http://doi.org/10.1109/34.1000236

Conci, A., & Aquino, F. (2005). Fractal coding based on image local fractal dimension. Computational & Applied Mathematics, 24(1), 83–98. http://doi.org/10.1590/S0101-82052005000100005

Corchs, S. E., Ciocca, G., Bricolo, E., & Gasparini, F. (2014). Imaging and Vision Laboratory, Department of Informatics, Systems and Communication, University of Milano-Bicocca. Recuperado el 2 de mayo de 2018, a partir de http://www.ivl.disco.unimib.it/activities/image-quality

Corchs, S. E., Ciocca, G., Bricolo, E., & Gasparini, F. (2016). Imaging and Vision Laboratory, Department of Informatics, Systems and Communication, University of Milano-Bicocca. Recuperado el 2 de mayo de 2018, a partir de http://www.ivl.disco.unimib.it/activities/complexity-perception-in-images

Corchs, S. E., Ciocca, G., Bricolo, E., & Gasparini, F. (2016). Predicting complexity perception of real world images. PLoS ONE, 11(6), 1–22. http://doi.org/10.1371/journal.pone.0157986

Corchs, S. E., Ciocca, G., Bricolo, E., & Gasparini, F. (2016). RawFoot DB - Imaging and Vision Laboratory - Department of Systems, Informatics and Communication - University of Milan-Bicocca, Italy. Recuperado el 2 de mayo de 2018, a partir de http://projects.ivl.disco.unimib.it/rawfoot

Corchs, S., Gasparini, F., & Schettini, R. (2014). No reference image quality classification for JPEG-distorted images. Digital Signal Processing: A Review Journal, 30, 86–100. http://doi.org/10.1016/j.dsp.2014.04.003

Corral S., A. D. (2003). Modeling edge perception using fuzzy logic. Master Thesis.

Cusano, C., Napoletano, P., & Schettini, R. (2016). Evaluating color texture descriptors under large variations of controlled lighting conditions. Journal of the Optical Society of America, 33(1), 17–30. http://doi.org/10.1364/JOSAA.33.000017

Da Silva, M. P., Courboulay, V., & Estraillier, P. (2011). Image Complexity Measure Based on Visual Attention. En IEEE International Conference On Image Processing (pp. 3281–3284).

Di Gesù, V., & Roy, S. (2000). Fuzzy measures for image distance. En Advances in Fuzzy Systems and Itelligent Technologies. NL: Shaker Publishing.

Forsythe, A. (2009). Visual Complexity: Is That All There Is?? Complexity, 5639, 158–166. http://doi.org/10.1007/978-3-642-02728-4_17

Forsythe, A., Mulhern, G., & Sawey, M. (2008). Confounds in pictorial sets: The role of complexity and familiarity in basic-level picture processing. Behavior Research Methods, 40(1), 116–129. http://doi.org/10.3758/BRM.40.1.116

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C. J., & Sawey, M. (2011). Predicting beauty: Fractal dimension and visual complexity in art. British Journal of Psychology, 102(1), 49–70. http://doi.org/10.1348/000712610X498958

Guo, X., Asano, C. M., Asano, A., & Kurita, T. (2011). Visual complexity perception and texture image characteristics. En 2011 International Conference on Biometrics and Kansei Engineering (pp. 260–265). http://doi.org/10.1109/ICBAKE.2011.13

Guo, X., Asano, C. M., Asano, A., Kurita, T., & Li, L. (2012). Analysis of texture characteristics associated with visual complexity perception. Optical Review, 19(5), 306–314. http://doi.org/10.1007/s10043-012-0047-1

Guo, X., Kurita, T., Muraki Asano, C., & Asano, A. (2013). Visual complexity assessment of painting images. En Image Processing (ICIP), 2013 20th IEEE International Conference on (pp. 388–392).

Hasler, D., & Suesstrunk, S. E. (2003). Measuring colourfulness in natural images. En Electronic Imaging 2003 (pp. 87–95). http://doi.org/10.1117/12.477378

Heaps, C., & Handel, S. (1999). Similarity and features of natural textures. Journal of Experimental Psychology: Human Perception and Performance, 25(2), 299–320. http://doi.org/10.1037/0096-1523.25.2.299

Hsu, C. H., Lee, C. Y., & Marantz, A. (2011). Effects of visual complexity and sublexical information in the occipitotemporal cortex in the reading of Chinese phonograms: A single-trial analysis with MEG. Brain and Language, 117(1), 1–11. http://doi.org/10.1016/j.bandl.2010.10.002

Huo, J. (2015). A measurement method for the mismatch between the image target and salient points as a metric for image complexity. En Science and Information Conference, SAI 2015 (pp. 645–649). http://doi.org/10.1109/SAI.2015.7237210

Huo, J. (2016a). An image complexity measurement algorithm with visual memory capacity and an EEG study. En SAI Computing Conference (pp. 264–268). http://doi.org/10.1109/SAI.2016.7555993

Huo, J. (2016b). Image Complexity and Visual Working Memory Capacity. Emerging Trends and Advanced Technologies for Computational Intelligence, 647, 301–314. http://doi.org/10.1007/978-3-319-33353-3

Ivanovici, M. (2017). A Naive Complexity Measure for Color Texture Images. En 2017 International Symposium on Signals, Circuits and Systems (ISSCS) (pp. 1–4).

Jamzad, M., & Yaghmaee, F. (2006). Achieving higher stability in watermarking according to image complexity. Scientia Iranica Journal, 13(4), 404–412. Recuperado a partir de http://www.plan.sid.ir/en/VEWSSID/J_pdf/95520060405.pdf

Kolmogorov, A. N. (1968). Three approaches to the quantitative definition of information. International Journal of Computer Mathematics, 2(1–4), 157–168. http://doi.org/10.1080/00207166808803030

Larson, E. C., & Chandler, D. M. (2010). Databases: CSIQ Image Quality Database. Recuperado el 2 de mayo de 2018, a partir de http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23

Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 802–817. http://doi.org/10.1109/TPAMI.2006.86

Machado, P., Romero, J., Nadal, M., Santos, A., Correia, J., & Carballal, A. (2015). Computerized measures of visual complexity. Acta Psychologica, 160, 43–57. http://doi.org/10.1016/j.actpsy.2015.06.005

Martín H., J. A., Santos, M., & de Lope, J. (2010). Orthogonal variant moments features in image analysis. Information Sciences, 180(6), 846–860. http://doi.org/10.1016/j.ins.2009.08.032

MIT Media Lab, Vision Texture. (2002). Recuperado el 2 de mayo de 2018, a partir de http://vismod.media.mit.edu/vismod/imagery/VisionTexture/

Murray, N., Marchesotti, L., & Perronnin, F. (2012a). AVA: A large-scale database for aesthetic visual analysis. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2408–2415. http://doi.org/10.1109/CVPR.2012.6247954

Murray, N., Marchesotti, L., & Perronnin, F. (2012b). AVA Dataset. Recuperado el 5 de mayo de 2018, a partir de https://github.com/mtobeiyf/ava_downloader

Ning, J., Zhang, L., Zhang, D., & Wu, C. (2010). Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 43(2), 445–456. http://doi.org/10.1016/j.patcog.2009.03.004

Palumbo, L., Makin, A. D. J., & Bertamini, M. (2014). Examining visual complexity and its influence on perceived duration. Journal of Vision, 14(14), 1–18. http://doi.org/10.1167/14.14.3.doi

Perki, J., & Hyvarinen, A. (2009). Modelling image complexity by independent component analysis, with application to content-based image retrieval. En Artificial Neural Networks–ICANN 2009 (pp. 704–714). http://doi.org/10.1007/978-3-642-04277-5_71

Pham, T. D., & Yan, H. (2018). A regularity statistic for images. Chaos, Solitons and Fractals, 106, 227–232. http://doi.org/10.1016/j.chaos.2017.11.033

Purchase, H. C., Freeman, E., & Hamer, J. (2012). An Exploration of Visual Complexity. En International Conference on Theory and Application of Diagrams (Vol. 7352, pp. 200–213). http://doi.org/10.1007/978-3-642-31223-6_22

Ramanarayanan, G., Bala, K., Ferwerda, J. a., & Walter, B. (2008). Dimensionality of Visual Complexity in Computer Graphics Scenes. En Proceedings of SPIE 6806, Human Vision and Electronic Imaging XIII (pp. 1–12). http://doi.org/10.1117/12.767029

Reinecke, K., Yeh, T., Miratrix, L., Mardiko, R., Zhao, Y., Liu, J., & Gajos, K. Z. (2013). Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness. En Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2049–2058). http://doi.org/10.1145/2470654.2481281

Rigau, J., Feixas, M., & Sbert, M. (2005). An Information-Theoretic Framework for Image Complexity. En Computational Aesthetics in Graphics, Visualization and Imaging (pp. 177–184). http://doi.org/10.2312/COMPAESTH/COMPAESTH05/177-184

Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of vision, 7(2), 1–22. http://doi.org/10.1167/7.2.17

Roth, S. P., Tuch, A. N., Mekler, E. D., Bargas-Avila, J. A., & Opwis, K. (2013). Location matters, especially for non-salient features-An eye-tracking study on the effects of web object placement on different types of websites. International Journal of Human Computer Studies, 71(3), 228–235. http://doi.org/10.1016/j.ijhcs.2012.09.001

Sheik, H., Wang, Z., Cormakc, L., & Bovik, A. (2006). LIVE Image Quality Assessment Database Release 2. Recuperado el 2 de mayo de 2018, a partir de http://live.ece.utexas.edu/research/quality/

Sheikh, H. R., Sabir, M. F., & Bovik, A. C. (2006). Image Quality Assessment Algorithms. Image Processing, IEEE Transactions on, 15(11), 3441–3452. http://doi.org/10.1109/TPCG.2004.1314471

Snodgrass, J. G., & Vanderwart, M. (1980). A standardised set of 260 pictures: normal for name agreement, familiarity and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174–215.

Solli, M., & Lenz, R. (2009). Color harmony for image indexing. En 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009 (pp. 1885–1892). http://doi.org/10.1109/ICCVW.2009.5457512

Sun, L., Yamasaki, T., & Aizawa, K. (2015). Relationship Between Visual Complexity and Aesthetics: Application to Beauty Prediction of Photos. En Computer Vision - ECCV 2014 Workshops (Vol. 8925, pp. 20–34). http://doi.org/10.1007/978-3-319-16199-0

Technology, M. I. of. (2002). Vision Texture. Recuperado el 14 de abril de 2018, a partir de http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. http://doi.org/10.1109/TIP.2003.819861

White, S. J., Hirotani, M., & Liversedge, S. P. (2012). Eye movement behaviour during reading of Japanese sentences: Effects of word length and visual complexity. Reading and Writing, 25(5), 981–1006. http://doi.org/10.1007/s11145-010-9289-0

Yaghmaee, F., & Jamzad, M. (2010). Estimating watermarking capacity in gray scale images based on image complexity. Eurasip Journal on Advances in Signal Processing, 2010, 1–9. http://doi.org/10.1155/2010/851920

Yoon, K. J., & Kweon, I. S. (2001). Color image segmentation considering the human sensitivity for color pattern variations. En Photonics Boston, SPIE, Page (s) (Vol. 4572, pp. 269–278). http://doi.org/10.1117/12.444191

Descargas

Publicado

2018-10-31

Cómo citar

Madrid Herrera, L., Chacón Murguía, M. I., & Ramírez Quintana, J. A. (2018). Análisis de Métodos de Medición de Complejidad de Imagen - Image Complexity Measurement Methods: A Survey. ReCIBE, Revista electrónica De Computación, Informática, Biomédica Y Electrónica, 7(2), 17–46. https://doi.org/10.32870/recibe.v7i2.99

Número

Sección

Computación e Informática