Fire Identification System in Interior Spaces
DOI:
https://doi.org/10.32870/recibe.v12i1.256Keywords:
Fire detection, convolutional neural networks,, preventionAbstract
Fires in closed spaces are characterized by being detonated when an electrical installation is causing a short circuit or by a source that causes a spark in said spaces, in addition, there is the presence of fuels such as gases and highly flammable solid or liquid materials. This research focuses on presenting a hybrid system for the prevention and detection of fires in closed places, such as a homeroom, corporate buildings, laboratories, among others. The implementation of sensors for the detection of different types of flammable gases has been proposed, as well as the detection of non-flammable gases that are the product of a combustion process, in addition to this, there is a computer vision detection system, the which uses a deep neural network for fire and smoke detection based on the You Only Look Once (YOLO) model. The variables obtained by the device, called DRI3 (Gas and Image Recognition Device), can store the records on a local server, as well as upload the data obtained to the ThingSpeak platform for information backup and analysis. According to the results obtained, the system had a 100% detection capacity of flammable gases and smoke, while the convolutional network used to detect fire in digital images had a detection capacity of 93%, additionally, the emission of alerts by sending alert messages to cell phones was managed correctly.References
Albassam, N., y Khan, J. (2019). Autonomous fire safety system for gas leak detection. doi:10.47611/JSR.VI.898
Anuario de Morbilidad 1984 -2015 (2015). Dirección General de Epidemiología. [Consultado 24 de julio 2022]. http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html
Bastidas, S. E. C., & Peláez, J. M. L. (2013). Estudio de redes de sensores y aplicaciones orientadas a la recolección y análisis de señales biomédicas. Revista GTI, 12(33), 85-99.
Choi, Myoung-Young & Jun, Sunghae. (2020). Fire Risk Assessment Models Using Statistical Machine Learning and Optimized Risk Indexing. Applied Sciences. 10. 4199. 10.3390/app10124199.
CONAPCI (10 de septiembre 2020). Incendios urbanos en México [en línea]. https://conapci.org/incendios-urbanos-en-mexico/
Di Pietro, R., Guarino, S., Verde, N. V. and Domingo-Ferrer, J. (2014). Security in wireless ad-hoc networks – A survey. Computer Communications, 51, 1-20. https://doi.org/10.1016/j.comcom.2014.06.003.
ENSATU, Encuesta ENSATU 2018 (2018) https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_informe_final.pdf
Girshick, R., Donahue, J., Darrell, T., y Malik, J. (2013). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 10.1109/CVPR.2014.81
Goutte, C., & Gaussier, E. (2005, March). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European conference on information retrieval (pp. 345-359). Springer, Berlin, Heidelberg.
Guo, K., Yang, P., Guo, D., y Liu, Y. (2019). Gas leakage monitoring with mobile wireless sensor networks. Procedia Computer Science, 154 , 430-438. doi: 10.1016/j.procs.2019.06.061
Hahnemann, A., Correa, C. and Rabbani, E (2017). Evaluación de seguridad contra incendio: método alternativo aplicado a edificaciones brasileñas. Rev. ALCONPAT, 7 (2) 186-199. https://doi.org/10.21041/ra.v7i2.178.
Iqbal, M.; Setianingsih, C.; y Irawan, B. (2020). Deep Learning Algorithm for Fire Detection, 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 237-242, doi: 10.1109/EECCIS49483.2020.9263456.
Kothandapani, V., Teja, V., Kumar, S., Divya, P., y D., B. (2021). Smart gas leak detection. International Journal of Scientific Research in Science and Technology, 8 , 952-956.
Kou, L., Wang, X., Guo, X., Zhu, J. Zhang, H. (2021). Deep learning based inverse model for building fire source location and intensity estimation, Fire Safety Journal, 121. https://doi.org/10.1016/j.firesaf.2021.103310.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., y Reed, S. (2015). SSD: Single shot multibox detector.
López-Molina, A., Vázquez-Román, R., & Díaz-Ovalle, C. (2012). Aprendizajes del Accidente de San Juan Ixhuatepec-México. Información tecnológica, 23(6), 121-128. https://dx.doi.org/10.4067/S0718-07642012000600013
Meidelfi, D., Moodutor, H., Sukma, F., y Adnin, S. (2022). Android based spark and gas leak detection and monitoring. Journal of Computer Networks, Architecture and High Performance Computing, 4 , 148-157. doi: 10.47709/cnahpc.v4i2.1489
Mock, C, Peck, M., Peden, M., Krug, E., (2008). A who plan for burn prevention and care. Geneva, World Health Organization, 2008.
Monaco, S.; Greco, S.; Farasin, A.; Colomba, L.; Apiletti, D.; Garza, P.; Cerquitelli, T.; Baralis, E. (2021). Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction. Appl. https://doi.org/10.3390/app112211060
Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; and Baik, S. W. (2018). Convolutional Neural Networks Based Fire Detection in Surveillance Videos, IEEE Access, vol. 6, 18174-18183, doi: 10.1109/ACCESS.2018.2812835.
Mwedzi, N. A., Nwulu, N. I. and Gbadamosi, S. L. (2019). Machine Learning Applications for Fire Detection in a Residential Building, 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), 1-4, doi: 10.1109/ICETAS48360.2019.9117318.
Nazir, A.; Mosleh, H.; Takruri, M.; Jallad, A.-H.; Alhebsi, H. (2022) Early Fire Detection: A New Indoor Laboratory Dataset and Data Distribution Analysis. Fire, 5(11). https://doi.org/10.3390/fire5010011.
Phung, V. H., & Rhee, E. J. (2018). A deep learning approach for classification of cloud image patches on small datasets. Journal of information and communication convergence engineering, 16(3), 173-178.
Raj, S., Ankit, T., Rishabh, S., y Saurabh, S. (2021). Gas leak detection and smart alerting using IOT. I-manager’s Journal on Information Technology, 10 (12). doi: 10.26634/jit.10.3.15052
Redmon, J., Divvala, S., Girshick, R., y Farhadi, A. (2016). You only look once: Unified, real- time object detection. IEEE 2016 conference on computer vision and pattern recognition (CVPR), p. 779-788. 10.1109/CVPR.2016.91
Rostami, A.; Shah-Hosseini, R.; Asgari, S.; Zarei, A.; Aghdami-Nia, M.; Homayouni, S. (2022) Active Fire Detection from Landsat-8 Imagery Using Deep Multiple Kernel Learning. Remote Sensors.14 (992). https://doi.org/10.3390/rs14040992
Saponara, S., Elhanashi, A.; Gagliardi, A. (2021). Real-time video fire/smoke detection based on CNN in antifire surveillance systems. J Real-Time Image Proc 18, 889–900. https://doi.org/10.1007/s11554-020-01044-0
Simonyan, K., y Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556.
Valis, M., Masopust, J., Hosák, L., y Urban, A. (2011). Gas leak at home. Activitas Nervosa Superior Rediviva, 53 , 59-63.
Wang, K.; Zhang, Y.; Wang, J.; Zhang, Q.; Chen, B. and Liu, D. (2018). Fire Detection in Infrared Video Surveillance Based on Convolutional Neural Network and SVM, 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), 162-167, doi: 10.1109/SIPROCESS.2018.8600510.
Wang, Z.a Zhang, T., Wu, X. Huang, X. (2022). Predicting transient building fire based on external smoke images and deep learning, Journal of Building Engineering, 47. https://doi.org/10.1016/j.jobe.2021.103823.
White, R. W. (1991). A sensor classification scheme. Microsensors. New York. IEEE Press, 3.
Yang, Z.; Bu, L. T. Wang, J. Ouyang and P. Yuan, "Fire Alarm for Video Surveillance Based on Convolutional Neural Network and SRU," 2018 5th International Conference on Information Science and Control Engineering (ICISCE), 2018, pp. 232-236, doi: 10.1109/ICISCE.2018.00056.
Yang, Z.; Bu, L.; Wang, T.; Yuan, P.; Jineng, O. (2020). Indoor Video Flame Detection Based on Lightweight Convolutional Neural Network. Pattern Recognition and Image Analysis. 30. 551-564. 10.1134/S1054661820030293.