Technical debts in the transactional system
DOI:
https://doi.org/10.32870/recibe.v12i2.293Keywords:
Metrics, Quality model, Technical debtAbstract
In international transactional financial services companies, program updates are occasionally made with errors not identifiable by the compiler. These errors, defined as technical debt, cause failures in the transactional system by not complying with the quality model. The investigations consulted have not reported the existence of new metrics to mitigate failures due to technical debts. Therefore, the research objective was to obtain new metrics to incorporate into the quality model. The methodology consisted of compiling a sample of programs, defining variables and metrics, and evaluating the cause-effect to find the technical debts. The experiment obtained samples of modified programs in the BASE24-eps software from two companies, and five metrics were defined. The result showed that the programs have a higher probability of finding at least one technical debt related to bug and code smell. This research allows concluding the importance of incorporating metrics into the quality processReferences
ACI-Worldwide. (2023). Manage multi-channel transactions with base24-eps. Descargado de https://recibe.page.link/ACI23
Alfayez, R., Winn, R., Alwehaibi, W., Venson, E., y Boehm, B. (2023). How sonarqube-identified technical debt is prioritized: An exploratory case study.
Information and Software Technology, 156, 107147. doi: https://doi.org/10.1016/j.infsof.2023.107147
Alves, N. S., Mendes, T. S., Mendonça, M. G. D., Spinola, R. O., Shull, F., y Seaman, C. (2016). Identification and management of technical debt: A systematic mapping study. Information and Software Technology, 70, 100-121. doi: https://doi.org/10.1016/j.infsof.2015.10.008
Atlassian. (2023). Escaping the black hole of technical debt | atlassian. Descargado de https://recibe.page.link/Atlassian238
Gartner, I. (2023). Definition of technical debt - gartner information technology glossary. Descargado de https://recibe.page.link/Gartner23
ISO. (2014). Iso 25000 square series. Descargado de https://recibe.page.link/ISO14
Katin, A., Lenarduzzi, V., Taibi, D., y Mandić, V. (2022). On the technical debt prioritization and cost estimation with sonarqube tool. , 302-309. doi: https://doi.org/10.1007/978-3-030-97947-8_40
Kruchten, P., Nord, R. L., y Ozkaya, I. (2012). Technical debt: From metaphor to theory and practice. IEEE Software, 29, 18-21. doi: https://doi.org/10.1109/MS.2012.167
Li, Y., Soliman, M., y Avgeriou, P. (2022). Automatic identification of self-admitted technical debt from four different sources. Empirical Software Engineering 2023 28:3, 28, 1-38. doi: https://doi.org/10.1007/s10664-023-10297-9
Mamun, M. A. A., Martini, A., Staron, M., Berger, C., y Hansson, J. (2019). Evolution of technical debt : An exploratory study. , 2476, 87-102. Descargado de https://recibe
.page.link/Mamun19
Pavlič, L., Hliš, T., Heričko, M., y Beranič, T. (2022). The gap between the admitted and the measured technical debt: An empirical study. Applied Sciences 2022, Vol. 12, Page 7482, 12, 7482. doi: https://doi.org/10.3390/app12157482
Saarimaki, N., Baldassarre, M. T., Lenarduzzi, V., y Romano, S. (2019). On the accuracy of sonarqube technical debt remediation time. 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 317-324. doi: https://doi.org/10.1109/SEAA.2019.00055
SONAR. (2023). Technical debt | definition guide | sonar. Descargado de https://recibe.page.link/SONAR23
Stopford, B., Wallace, K., y Allspaw, J. (2017). Technical debt: Challenges and perspectives. IEEE Software, 34, 79-81. doi: https://doi.org/10.1109/MS.2017.99