Artificial Intelligence in Medical Recommendation Systems: A Literature Review
DOI:
https://doi.org/10.32870/recibe.v12i2.311Keywords:
eHealth, Recomender Systems, Artificial Intelligence, Software, Systematic Literature ReviewAbstract
In Mexico, approximately one in three people search for information about medical care through the Internet, considering factors such as specialty, hours, location, cost, treatment effectiveness, and quality of medical treatment. In order to address these searches, recommender systems have been developed that offer personalized suggestions based on explicit and implicit user information. These systems use various data sources, including the Internet of Things, to balance accuracy, added value, dispersion, and stability in recommendations. Despite the wide application in eHealth, current research needs a specific focus on physician recommendation systems. This study aims to present the most recent works in this area, analyzing approaches, methods, techniques, and trends through a systematic literature review following the evidence-based software engineering (EBSE) process. The results show more recommendation techniques based on machine learning, heuristic logic, and a combination of both approaches (hybrids). Finally, open research areas and trends in this field are identified, which will be of interest for future applications in the medical field.References
[OMS] Organización Mundial de la Salud (s.f.). Observatorio Global para la eSalud. https://www.who.int/observatories/global-observatory-for-ehealth
Bhansali, A., & Nagwani, N. K. (2021, May). A Prototype of Doctor Recommendation System Using Classification Algorithms. In 2021 Emerging Trends in Industry 4.0 (ETI 4.0) (pp. 1-4). IEEE.
Bobadilla, J., Ortega, F. Hernando, A. y Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46. Pp. 109-132.
Bravo, J. (2021, 7 mayo). Doctor Google y la salud digital. El Economista. https://www.eleconomista.com.mx/opinion/Doctor-Google-y-la-salud-digital20210507-0041.html
Burgos, D., Herder, E., & Olmedilla, D. (2007). Ten Competence: Building the European Network for the continuous development of competences. Inteligencia Artif., 11(33), 79-84.
Calero Valdez, A., Ziefle, M., Verbert, K., Felfernig, A. y Holzinger, A. (2016). Recommender Systems for Health Informatics: State-of-the-Art and Future Perspectives. ML for Health Informatics, LNAI 9605, pp. 391-414.
Deng, Z., Hong, Z., Zhang, W., Evans, R. y Chen, Y. (2019). The Effect of Online Effort and Reputation of Physicians on Patients’ Choice: 3-Wave Data Analysis of China’s Good Doctor Website. Journal of medical internet research, 21(3), p. 1.
Guo, L., Jin, B., Yao, C., Yang, H., Huang, D., & Wang, F. (2016). Which doctor to trust: a recommender system for identifying the right doctors. Journal of medical Internet research, 18(7), e6015.
Gupta, S., & Bindal, A. K. (2022, November). Multi-Modality Recommender Systems: A Review. In 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 88-93). IEEE.
Han, Q., de Troya, I. M. D. R., Ji, M., Gaur, M., & Zejnilovic, L. (2018, June). A collaborative filtering recommender system in primary care: Towards a trusting patient-doctor relationship. In 2018 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 377-379). IEEE.
Han, Q., Ji, M., Martinez De Rituerto De Troya, I., Gaur, M., & Zejnilovic, L. (2018). A hybrid recommender system for patient-doctor matchmaking in primary care. Proceedings-2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018, 481–490.
Iglesias Osores, S. y Saavedra Camacho, J. L. (2020). Tendencias de búsquedas en internet por la pandemia COVID-19 en Perú. Revista Cubana de Higiene y Epidemiología, 57.
Kannan, R. J., Tamakuwala, H., Kale, S., & Bhowmick, H. R. (2020, September). Doctor Finder: Find doctors on the Go. In IOP Conference Series: Materials Science and Engineering (Vol. 925, No. 1, p. 012038). IOP Publishing.
Katarya, R. (2017, December). A systematic review of group recommender systems techniques. In 2017 International conference on intelligent sustainable systems (ICISS) (pp. 425-428). IEEE.
Kitchenham, B. A., Budgen, D., & Brereton, P. (2015). Evidence-based software engineering and systematic reviews (Vol. 4). CRC press.
Mawardi, V. C., & Naga, D. S. (2020, December). Application of Recommendation Medical Specialty Doctors Based on User Symptoms Using the C4. 5 Method and K-Nearest Neighbor. In IOP Conference Series: Materials Science and Engineering (Vol. 1007, No. 1, p. 012152). IOP Publishing
Meng, S., Fan, S., Li, Q., Wang, X., Zhang, J., Xu, X., ... & Bhuiyan, M. Z. A. (2022). Privacy-aware factorization-based hybrid recommendation method for healthcare services. IEEE Transactions on Industrial Informatics, 18(8), 5637-5647.
Mondal, S., Basu, A., & Mukherjee, N. (2020). Building a trust-based doctor recommendation system on top of multilayer graph database. Journal of Biomedical Informatics, 110, 103549.
Moya-Rodríguez, J. L., Becerra-Ferreiro, A. M., & Chagoyén-Méndez, C. A. (2012). Utilización de Sistemas Basados en Reglas y en Casos para diseñar transmisiones por tornillo sinfín. Ingeniería Mecánica, 15(1), 01-09.
Patel, B., Desai, P., & Panchal, U. (2017, March). Methods of recommender system: A review. In 2017 international conference on innovations in information, embedded and communication systems (ICIIECS) (pp. 1-4). IEEE.
Pincay, J., Terán, L., & Portmann, E. (2019, April). Health recommender systems: a state-of-the-art review. In 2019 Sixth International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 47-55). IEEE.
Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and software technology, 64, 1-18.
Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., ... & Duffy, S. (2006). Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version, 1(1), b92.
Ponz Tienda, J. L., Benlloch Marco, J., Andrés Romano, C., & SENABRE, D. (2011). Un algoritmo matricial RUPSP/GRUPSP" sin interrupción" para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos. Revista de la Construcción, 10(2), 90-103.
Priego Álvarez, H. R. (2005). Consumo en salud. Análisis mercadológico del comportamiento del consumidor sanitario. [Tesis Doctoral]. Universidad Autónoma de Barcelona.
Ramos, O. (2019, 2 diciembre). Sistemas de recomendación | Qué son, tipos y ejemplos. GraphEverywhere. https://www.grapheverywhere.com/sistemas-de-recomendacion-que-son-tipos-yejemplos/
Russell, S. J., & Norvig, P. (2004). Inteligencia Artificial: un enfoque moderno (No. 04; Q335, R8y 2004.).
Singh, A., Kaur, I. G. P., & Dabas, C. (2018, August). Get-a-Doc: A Doctor Recommender System. In 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 219-223). IEEE.
Swarnalatha, S., Kesavarthini, I., Poornima, S., & Sripriya, N. (2019, February). Med-recommender system for predictive analysis of hospitals and doctors. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1-5). IEEE.
Thongchotchat, V., Sato, K., & Suto, H. (2021, May). Recommender System Utilizing Learning Style: Systematic Literature Review. In 2021 6th International Conference on Business and Industrial Research (ICBIR) (pp. 184-187). IEEE.
Trang Tran, T. N., Felfernig, A., Trattner, Ch. y Holzinger, A. (2020). Recommender systems in the healthcare domain: state-of-the-art and research issues. Journal of Intelligent Information Systems. (2021)57, pp. 171-201.
Venkatesh, B. H., Sai, A. P., Reddy, M. R., & Fathimabi, S. K. (2022, June). Cloud Based Personal Health Record Management System and Medical Recommender System. In 2022 7th International Conference on Communication and Electronics Systems (ICCES) (pp. 1744-1749). IEEE.