metaheuristic methods; search patterns; second-order systems; evolutionary methods.

Authors

  • Jesus Edgar Elizondo Nuñez Universidad de Guadalajara
  • Carlos Octavio Guzman Rosales Universidad de Guadalajara
  • Elivier Armando Reyes Davila Universidad de Guadalajara
  • Hector Joaquin Escobar Cuevas Universidad de Guadalajara
  • Alberto Luque Chang Universidad de Guadalajara

DOI:

https://doi.org/10.32870/recibe.v14i2.318

Keywords:

metaheuristic methods; search patterns; second-order systems; evolutionary methods.

Abstract

Recently, several new metaheuristic schemes have been introduced in the literature. Although all these approaches consider very different phenomena as metaphors, the search patterns used to explore the search space are very similar. On the other hand, second-order systems are models that exhibit different temporal behaviors depending on the value of their parameters. Such temporal behaviors can be conceived as search patterns with multiple behaviors and simple configurations. In this article, a set of new search patterns is presented to efficiently explore the search space. These patterns emulate the response of a second-order system. The proposed set of search patterns has been integrated as a complete search strategy, called the Second Order Algorithm (SOA), to obtain the global solution of complex optimization problems. To analyze the performance of the proposed scheme, it has been compared on a set of representative optimization problems, including multimodal, unimodal, and hybrid benchmark formulations. The numerical results demonstrate that the proposed SOA method exhibits remarkable performance in terms of accuracy and high convergence rates.

References

Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies – A comprehensive introduction. Natural Computing, 1(1), 3–52. https://doi.org/10.1023/A:1015059928466

Birbil, Ş. İ., & Fang, S.-C. (2003). An Electromagnetism-like Mechanism for Global Optimization. Journal of Global Optimization, 25(3), 263–282. https://doi.org/10.1023/A:1022452626305

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117. https://doi.org/10.1016/j.ins.2013.02.041

Cuevas, E., Echavarría, A., & Ramírez-Ortegón, M. A. (2014). An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Applied Intelligence, 40(2), 256–272. https://doi.org/10.1007/s10489-013-0458-0

Cuevas, E., Gálvez, J., Avila, K., Toski, M., & Rafe, V. (2020). A new metaheuristic approach based on agent systems principles. Journal of Computational Science, 47, 101244. https://doi.org/10.1016/j.jocs.2020.101244

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang–Big Crunch. Advances in Engineering Software, 37(2), 106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110–111, 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

Haidekker, M. A. (2020). Linear Feedback Controls: The Essentials. Elsevier.

Han, M., Liu, C., & Xing, J. (2014). An evolutionary membrane algorithm for global numerical optimization problems. Information Sciences, 276, 219–241. https://doi.org/10.1016/j.ins.2014.02.057

Hansen, N. (2023). The CMA Evolution Strategy: A Tutorial (arXiv:1604.00772). arXiv. https://doi.org/10.48550/arXiv.1604.00772

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21–57. https://doi.org/10.1007/s10462-012-9328-0

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948 vol.4. https://doi.org/10.1109/ICNN.1995.488968

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165. https://doi.org/10.1016/j.chemolab.2015.08.020

Meng, Z., & Pan, J.-S. (2016). Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowledge-Based Systems, 97, 144–157. https://doi.org/10.1016/j.knosys.2016.01.009

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249. https://doi.org/10.1016/j.knosys.2015.07.006

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Morales-Castañeda, B., Zaldívar, D., Cuevas, E., Fausto, F., & Rodríguez, A. (2020). A better balance in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation, 54, 100671. https://doi.org/10.1016/j.swevo.2020.100671

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57. https://doi.org/10.1007/s11721-007-0002-0

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE Circuits and Devices Magazine, 5(1), 19–26. https://doi.org/10.1109/101.17235

Siddique, N., & Adeli, H. (2016). Simulated Annealing, Its Variants and Engineering Applications. International Journal on Artificial Intelligence Tools, 25(06), 1630001. https://doi.org/10.1142/S0218213016300015

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328

T, B. (1991). A Survey of Evolution Strategies. Proc. of Fourth Internal. Conf. on Genetic Algorithms. https://cir.nii.ac.jp/crid/1573950398979648512

Tang, K. S., Man, K. F., Kwong, S., & He, Q. (1996). Genetic algorithms and their applications. IEEE Signal Processing Magazine, 13(6), 22–37. https://doi.org/10.1109/79.543973

Valdivia-Gonzalez, A., Zaldívar, D., Fausto, F., Camarena, O., Cuevas, E., & Perez-Cisneros, M. (2017). A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles. Energies, 10(1), Article 1. https://doi.org/10.3390/en10010092

Yang, X.-S. (2009). Firefly Algorithms for Multimodal Optimization. In O. Watanabe & T. Zeugmann (Eds.), Stochastic Algorithms: Foundations and Applications (pp. 169–178). Springer. https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Springer. https://doi.org/10.1007/978-3-642-12538-6_6

Yang, X.-S., & Deb, S. (2009). Cuckoo Search via Lévy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 210–214. https://doi.org/10.1109/NABIC.2009.5393690

Zhang, J., & Sanderson, A. C. (2007). JADE: Self-adaptive differential evolution with fast and reliable convergence performance. 2007 IEEE Congress on Evolutionary Computation, 2251–2258. https://doi.org/10.1109/CEC.2007.4424751

Zill, D. G. (2012). A First Course in Differential Equations with Modeling Applications. Cengage Learning.

Published

2025-06-18

How to Cite

Elizondo Nuñez, J. E., Guzman Rosales, C. O., Reyes Davila, E. A., Escobar Cuevas, H. J., & Luque Chang, A. (2025). metaheuristic methods; search patterns; second-order systems; evolutionary methods. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 14(2), C–16. https://doi.org/10.32870/recibe.v14i2.318

Issue

Section

Computer Science & IT