Support Vector Machines (SVM) based identification and classification of pharmaceutical images

Authors

  • Jesus Alfonso Medrano Hermosillo Tecnológico Nacional de México
  • Abraham Efraim Rodriguez Mata Tecnológico Nacional de México
  • Larbi Djilali Tecnológico Nacional de México
  • Edgar Macias Garcia INTEL
  • Oscar J. Suarez
  • Raul Vazquez

DOI:

https://doi.org/10.32870/recibe.v13i1.319

Keywords:

Machine learning, Artificial Intelligence, Artificial Vision

Abstract

The present study focuses on the identification and classification of images that contain drugs, with the purpose of facilitating their selection and/or appropriate administration. The implementation of the algorithm is carried out by combining conventional techniques and machine learning methods. Preprocessing is used to carry out image segmentation, using the thresholding technique. Once the segmentation is completed, the pills are classified using machine learning techniques, also known as machine learning in English. In the specific context of this work, the use of support vector machines (SVM) is chosen, which demonstrate notable effectiveness in the classification of linearly separable data.  

References

Andhare, P., & Rawat, S. (2016). Pick and place industrial robot controller with computer vision. 2016 International Conference on Computing Communication Control and automation (ICCUBEA), 1-4.

Campbell, C., & Ying, Y. (2022). Learning with support vector machines. Springer Nature.

García, W., & Páez, E. (2021). Diseño de un sistema de conducción autónoma adaptado a una silla de ruedas eléctrica.

Gidudu, A., Hulley, G., & Tshilidzi, M. (2007). Classification of images using support vector machines.

Gonzalez R. C. & Woods R. E. (2002). Digital image processing (2nd ed.). Prentice Hall.

H. Xia, C. Wang, L. Yan, X. Dong and Y. Wang (2019). Machine Learning Based Medicine Distribution System. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 912-915.

Macías-Macías, J. M., Quintana, J. a. R., Aguirre, J. S. a. M., Murguía, M. I. C., & Sáenz, A. D. C. (2021). Procesamiento embebido de p300 basado en red neuronal convolucional para interfaz cerebro-computadora ubicua. RECIBE.

Mario I. Chacón M. (2007). Procesamiento digital de imágenes. Editorial Trillas.

McGibbon, C. A., Sexton, A., Gryfe, P., Dutta, T., Jayaraman, A., Deems-Dluhy, S., Novak, A. C., Fabara, E., Adans-Dester, C., & Bonato, P. (2021). Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disability and Rehabilitation: Assistive Technology, 18(5), 475–482.

Medrano, J. A., Zendejas-Hernandez, I., & Sandoval-Rodríguez, R. (2014). Diseño de un Exoesqueleto de Miembros Inferiores para la Movilidad de Personas con Paraplejía.

Mogahed, H. S., & Ibrahim, M. M. (2023). Development of a motion controller for the electric wheelchair of quadriplegic patients using head movements recognition. IEEE Embedded Systems Letters, 1.

N. Hnoohom, S. Yuenyong and P. Chotivatunyu (2018). MEDiDEN: Automatic Medicine Identification Using a Deep Convolutional Neural Network. 2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), 1-5.

Organization, W. H., & Society, I. S. C. (2013). International perspectives on Spinal cord Injury. World Health Organization.

Ou, Y., Tsai, A., Wang, J., & Lin, J. (2018). Automatic Drug Pills Detection based on Convolution Neural Network. 2018 International Conference on Orange Technologies (ICOT), 1-4.

Pascuas-Rengifo, Y., Vargas-Jara, E. O., & Sáenz-Núñez, M. (2015). Tecnologías de la información y las comunicaciones para personas con necesidades educativas especiales. Entramado, 11(2), 240– 248.

Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. In Machine learning (pp. 101-121). Academic Press.

Rafael C. González and Richard E. Woods (2006). Digital Image Processing (3rd Edition). Prentice- Hall, Inc., USA.

S. R. Shinde, K. Bhavsar, S. Kimbahune, S. Khandelwal, A. Ghose y A. Pal (2020). Detection of Counterfeit Medicines Using Hyperspectral Sensing. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).

Shah, F. P., & Patel, V. (2016, March). A review on feature selection and feature extraction for text classification. In 2016 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 2264-2268). IEEE.

Suthaharan, S., & Suthaharan, S. (2016). Support vector machine. Machine learning models and algorithms for big data classification: thinking with examples for effective learning, 207-235.

Published

2024-08-20

How to Cite

Medrano Hermosillo, J. A., Rodriguez Mata, A. E., Djilali, L. ., Macias Garcia, E. ., Suarez, O. J., & Vazquez, R. (2024). Support Vector Machines (SVM) based identification and classification of pharmaceutical images. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 13(1), E1–13. https://doi.org/10.32870/recibe.v13i1.319