Beat by Beat: Designing a Rhythm Game for Screening Dyslexia

Authors

  • Katya Alvarez-Molina Unidad de Transferencia Tecnológica Tepic, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, Nayarit, México
  • Juan Martínez-Miranda Unidad de Transferencia Tecnológica Tepic, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, Nayarit, México
  • Ana I. Martínez-García Departamento de Ciencias de la Computación, División de Física Aplicada, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México
  • Karina Caro Universidad Autónoma de Baja California (UABC), Ensenada, México

DOI:

https://doi.org/10.32870/recibe.v13i3.372

Keywords:

Screening Dyslexia, Rhythm Video Games, User-Centered Design

Abstract

Dyslexia, a language-based disorder, affects children’s reading, writing, and spelling abilities despite adequate classroom instruction. Early screening is crucial to mitigate the adverse effects of delayed detection. Dyslexia also impairs precise timing tasks, including rhythm skills essential for reading. This study explores the potential of serious games incorporating rhythms to screen for dyslexia, leveraging the natural synchronization of rhythm skills observed in body movements. Existing rhythm games fail to accurately address dyslexia-related difficulties, lacking relevant performance data and user-centred design. Our research aims to design a 2D sidescrolling platformer game, integrating established rhythmic activities to identify children at risk for dyslexia and engage them in gameplay. A multidisciplinary team collaborates on this initiative, including neuropsychologists, music therapists, and game designers. Using the Design Thinking Methodology, we focus on identifying effective music compositions, game mechanics, dynamics, and visual elements that enhance the gaming experience for children with dyslexia and support early dyslexia screening.

Author Biographies

Katya Alvarez-Molina, Unidad de Transferencia Tecnológica Tepic, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, Nayarit, México

Katya Alvarez Molina studied Electronic Engineering and earned a master’s in Music Technology at UNAM, with a research stay at LIACS, Netherlands. She holds a PhD in Engineering - Digital Media from the University of Bremen, Germany. As a postdoc at CICESE-CONAHCYT, she works on interactive music systems and video games.

Juan Martínez-Miranda, Unidad de Transferencia Tecnológica Tepic, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, Nayarit, México

Juan Martínez-Miranda holds a PhD in Computer Engineering from the Complutense University of Madrid. He has worked as a researcher at the Barcelona Science Park, the Austrian Institute for Artificial Intelligence Research, the Polytechnic University of Valencia and is currently a senior researcher and coordinator of the Tepic unit at CICESE.

Ana I. Martínez-García, Departamento de Ciencias de la Computación, División de Física Aplicada, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México

Ana I. Martínez G. works as a researcher at the Center for Scientific Research and Higher Education of Ensenada B.C. Mexico. She works doing research on Human Computer Interaction in support of vulnerable populations. She received her Ph.D. in Computer Science from the University of Manchester, UK.

Karina Caro, Universidad Autónoma de Baja California (UABC), Ensenada, México

Karina Caro is an assistant professor at the Autonomous University of Baja California (UABC), Mexico, where she directs the Technology for Social Good Research Lab. She received her Ph.D. in Computer Science from the Center for Scientific Research and Higher Education of Ensenada, Mexico (CICESE Research Center).

References

Snowling, M. (1987). Dyslexia: A cognitive developmental perspective. Basil Black- well.

Bonacina, S., Cancer, A., Lanzi, P. L., Lorusso, M. L., & Antonietti, A. (2015). Improving reading skills in students with dyslexia: the efficacy of a sublexical training with rhythmic background. Frontiers in psychology, 6, 1510. https://doi.org/10.3389/fpsyg.2015.01510

Tierney, A., & Kraus, N. (2015). Evidence for multiple rhythmic skills. PloS one, 10(9), e0136645.https://doi.org/10.1371/journal.pone.0136645

Huss, M., Verney, J. P., Fosker, T., Mead, N., & Goswami, U. (2011). Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex, 47(6), 674-689. https://doi.org/10.1016/j.cortex.2010.07.010

Overy, K. (2003). Dyslexia and music: From timing deficits to musical intervention. Annals of the New York academy of sciences, 999(1), 497-505.https://doi.org/10.1196/annals.1284.060

Overy, K., Nicolson, R. I., Fawcett, A. J., & Clarke, E. F. (2003). Dyslexia and music: Measuring musical timing skills. Dyslexia, 9(1), 18-36.https://doi.org/10.1002/dys.233

Douglas, S., & Willatts, P. (1994). The relationship between musical ability and literacy skills. Journal of Research in reading, 17(2), 99-107.https://doi.org/10.1111/j.1467-9817.1994.tb00057.x

McGivern, R. F., Berka, C., Languis, M. L., & Chapman, S. (1991). Detection of deficits in temporal pattern discrimination using the seashore rhythm test in young children with reading impairments. Journal of Learning Disabilities, 24(1), 58-62.https://doi.org/10.1177/002221949102400110

Strait, D. L., Hornickel, J., & Kraus, N. (2011). Subcortical processing of speech regularities underlies reading and music aptitude in children. Behavioral and Brain Functions, 7, 1-11.https://doi.org/10.1186/1744-9081-7-44

Dalla Bella, S. (2022). Rhythmic serious games as an inclusive tool for music-based interventions. Annals of the New York Academy of Sciences, 1517(1), 15-24. https://doi.org/10.1111/nyas.14878

Flaugnacco, E., Lopez, L., Terribili, C., Zoia, S., Buda, S., Tilli, S., & Schön, D. (2014). Rhythm perception and production predict reading abilities in developmental dyslexia. Frontiers in human neuroscience, 8, 392.https://doi.org/10.3389/fnhum.2014.00392

Corriveau, K. H., & Goswami, U. (2009). Rhythmic motor entrainment in children with speech and language impairments: Tapping to the beat. cortex, 45(1), 119-130.https://doi.org/10.1016/j.cortex.2007.09.008

Thomson, J. M., Fryer, B., Maltby, J., & Goswami, U. (2006). Auditory and motor rhythm awareness in adults with dyslexia. Journal of research in reading, 29(3), 334-348.https://doi.org/10.1111/j.1467-9817.2006.00312.x

Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: auditory and motor rhythms link to reading and spelling. Journal of Physiology-Paris, 102(1-3), 120-129. https://doi.org/10.1016/j.jphysparis.2008.03.007

Cason, N., & Schön, D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50(11), 2652-2658. https://doi.org/10.1016/j.neuropsychologia.2012.07.018

Bedoin, N., Brisseau, L., Molinier, P., Roch, D., & Tillmann, B. (2016). Temporally regular musical primes facilitate subsequent syntax processing in children with specific language impairment. Frontiers in Neuroscience, 10, 245.

https://doi.org/10.3389/fnins.2016.00245

Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: a biological marker of dyslexia. Journal of Neuroscience, 33(8), 3500-3504. https://doi.org/10.1523/JNEUROSCI.4205-12.2013

Tierney, A. T., & Kraus, N. (2013). The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain and language, 124(3), 225-231. https://doi.org/10.1016/j.bandl.2012.12.014

Tierney, A., White-Schwoch, T., MacLean, J., & Kraus, N. (2017). Individual differences in rhythm skills: Links with neural consistency and linguistic ability. Journal of cognitive neuroscience, 29(5), 855-868. https://doi.org/10.1162/jocn_a_01092

Moritz, C., Yampolsky, S., Papadelis, G., Thomson, J., & Wolf, M. (2013). Links between early rhythm skills, musical training, and phonological awareness. Reading and Writing, 26, 739-769. https://doi.org/10.1007/s11145-012-9389-0

David, D., Wade-Woolley, L., Kirby, J. R., & Smithrim, K. (2007). Rhythm and reading development in school-age children: A longitudinal study. Journal of Research in Reading, 30(2), 169-183. https://doi.org/10.1111/j.1467-9817.2006.00323.x

Bégel, V., Di Loreto, I., Seilles, A., & Dalla Bella, S. (2017). Music games: potential application and considerations for rhythmic training. Frontiers in human neuroscience, 11, 273. https://doi.org/10.3389/fnhum.2017.00273

Overy, K. (2000). Dyslexia, temporal processing and music: The potential of music as an early learning aid for dyslexic children. Psychology of music, 28(2), 218-229. https://doi.org/10.1177/0305735600282010

Johnston, D., Egermann, H., & Kearney, G. (2020). SoundFields: A virtual reality game designed to address auditory hypersensitivity in individuals with autism spectrum disorder. Applied Sciences, 10(9), 2996. https://doi.org/10.3390/app10092996

Bégel, V., Seilles, A., & Dalla Bella, S. (2018). Rhythm Workers: A music-based serious game for training rhythm skills. Music & Science, 1, 2059204318794369. https://doi.org/10.1177/2059204318794369

Vonthron, F., Yuen, A., Pellerin, H., Cohen, D., & Grossard, C. (2024). A Serious Game to Train Rhythmic Abilities in Children With Dyslexia: Feasibility and Usability Study. JMIR Serious Games, 12, e42733. https://doi.org/10.2196/42733

Rauschenberger, M., Rello, L., Baeza-Yates, R., Gomez, E., & Bigham, J. P. (2017, April). Towards the prediction of dyslexia by a web-based game with musical elements. In Proceedings of the 14th International Web for All Conference (pp. 1-4). https://doi.org/10.1145/3058555.3058565

Alvarez-Molina, K., Reinschluessel, A. V., Kratky, T., Scharpenberg, M., & Malaka,

R. (2023). Can you feel the rhythm? Comparing vibrotactile and auditory stimuli in the rhythm video game Jump’n’Rhythm. Behaviour & Information Technology, 1-18. https://doi.org/10.1080/0144929X.2023.2243525

Alexandrovsky, D., Alvarez, K., Walther-Franks, B., Wollersheim, J., & Malaka,

R. (2016). Jump’n’Rhythm: a video game for training timing skills. Mensch und Computer 2016 – Workshopband. Aachen: Gesellschaft für Informatik e.V.. Be-Greifbare Interaktion. Aachen. https://doi.org/10.18420/muc2016-ws10-0005

Rello, L., Williams, K., Ali, A., White, N. C., & Bigham, J. P. (2016, April). Dytective: towards detecting dyslexia across languages using an online game. In Proceedings of the 13th International Web for All Conference (pp. 1-4). https://doi.org/10.1145/2899475.2899491

Geurts, L., Vanden Abeele, V., Celis, V., Husson, J., Van den Audenaeren, L., Loyez, L., & Ghesquière, P. (2015). Diesel-X: a game-based tool for early risk detection of dyslexia in preschoolers. Describing and Studying Domain-Specific Serious Games, 93-114. https://doi.org/10.1007/978-3-319-20276-1_7

Nessy. Dyslexia Screening - Nessy UK. https://www.nessy.com/uk/product/dyslexia- screening/,2011. [Online; accessed 26-May-2024].

Lockwood, T. (2010). Design thinking: Integrating innovation, customer experience, and brand value. Simon and Schuster.

Downloads

Published

2024-12-04

How to Cite

Alvarez-Molina, K., Martínez-Miranda, J. ., Martínez-García, A. I. ., & Caro, K. (2024). Beat by Beat: Designing a Rhythm Game for Screening Dyslexia. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 13(3), E5–10. https://doi.org/10.32870/recibe.v13i3.372

Issue

Section

Special