Modelización del canal inalámbrico para enlaces punto a punto empleando tecnología Zigbee en entornos exteriores - On Modeling Wireless Channel for point to point links by using Zigbee technology in Outdoors Scenarios.

Authors

  • Román Alcides Lara Cueva Universidad de las Fuerzas Armadas-ESPE, Ecuador.
  • Daniel Mauricio Merino Jácome Universidad de las Fuerzas Armadas-ESPE, Ecuador.

DOI:

https://doi.org/10.32870/recibe.v6i1.76

Keywords:

ZigBee, RSSI, modelización, canal inalámbrico

Abstract

En el presente trabajo se realiza el modelización del canal de propagación para una red de comunicación punto a punto (PtP, del inglés Point-To-Point) entre dispositivos que utilizan tecnología ZigBee en entornos suburbanos a 2.4GHz, para poder brindar a la comunidad científica encargada de la planificación y dimensionamiento de redes, un modelo ajustado específicamente a redes con estas características que permitirá aumentar la eficiencia y disminuir los costos implícitos de las mismas. El modelo presentado fue obtenido al interpolar las mediciones de la potencia recibida (RSSI, del inglés Received Signal Strength Indicator) durante el despliegue de una red PtP de longitud variable de 2 a 160 metros, modificando la altura de los dispositivos en intervalos de 25 centímetros y ajustando las curvas resultantes a modelos matemáticos conocidos. En contraposición a diversos artículos de la literatura, nuestro modelo hace énfasis en el efecto causado por la altura de los dispositivos sobre la distancia a la cual se genera discontinuidad en el modelo de propagación, encontrándose que dicha discontinuidad describe un comportamiento exponencial decreciente donde a medida que la altura aumenta, la discontinuidad se aproxima al transmisor, hasta una distancia límite de 60 metros, a partir de la cual la altura de los dispositivos deja de influir en la distancia donde se produce la discontinuidad.Abstract: In the present work we are modeling a propagation channel for a point-to-point (PtP) communication network between devices, using ZigBee technology in 2.4 GHz and suburban environments, in order to provide tools for the scientific community that manage planning and sizing of networks, a model is adjusted specifically to networks with these characteristics that will allow to increase the efficiency and to reduce the implicit costs. The model presented is obtained by interpolating the Received Signal Strength Indicator (RSSI) during the deployment of a PtP network of variable length from 2 to 160 meters, modifying the height of the devices in intervals of 25 centimeters and adjusting the resulting curves to known mathematical models. In contrast to several articles in the literature, our model emphasizes the effect caused by the height of the devices over the distance to which discontinuity is generated in the propagation model, and it was found that this discontinuity describes a decreasing exponential behavior in the measure. And that the height increases, the discontinuity approaches the transmitter, up to a limit distance of 60 meters, from which the height of the devices ceases to influence the distance when the discontinuity occurs.Keywords: ZigBee, RSSI, modeling, wireless channel

Author Biographies

Román Alcides Lara Cueva, Universidad de las Fuerzas Armadas-ESPE, Ecuador.

R. Lara-Cueva, recibió el grado de Ing. en Electrónica y Telecomunicaciones de la Escuela Politécnica Nacional, Quito, Ecuador, en 2001. El grado de Master en Sistemas Inalámbricos y Tecnologías Relacionadas del Politécnico di Torino, Torino, Italia, en 2005. La Maestría y Doctorado en Redes de Telecomunicación para Países en Desarrollo de la Universidad Rey Juan Carlos, Madrid, España en 2010 y 2015, respectivamente. En 2002, se unió al Departamento de Eléctrica y Electrónica de la Universidad de las Fuerzas Armadas—ESPE, Sangolquí, Ecuador, donde ha sido profesor auxiliar, llegando a ser profesor asociado en el 2005 y profesor titular principal en 2016. Desde 2007, el ha sido Director del Centro de Investigación de Redes Ad Hoc (CIRAD), además de haber fundado el grupo de investigación en Sistemas Inteligentes (WiCOM-Energy) en el 2011. Sus principales intereses de investigación incluyen el procesamiento digital de señales, ciudades inteligentes, sistemas inalámbricos y la teoría de aprendizaje automático. El es Autor y Coautor en 12 proyectos de investigación financiados con fondos públicos y ha dirigido 7 de ellos.

Daniel Mauricio Merino Jácome, Universidad de las Fuerzas Armadas-ESPE, Ecuador.

D. Merino-Jácome, es estudiante egresado de la carrera de Ingeniería en Electrónica y Telecomunicaciones en la Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador. En el año 2016 se unió al Grupo de Investigación en Sistemas Inteligentes (WICOM-Energy) como ayudante de investigación. Sus áreas de interés incluyen la inteligencia artificial y las comunicaciones inalámbricas.

References

Ahmed, I., Orfali, S., Khattab, T., & Mohamed, A. (2011). Characterization of the Indoor-Outdoor Radio Propagation Channel at 2.4 GHz. IEEE Conference and Exhibition (GCC). Dubai.

de Brito, G. S. (1993). Overview of the activities of the project cost 231 “Evolution of land mobile radio (including personal) communications. Proceedings of 2nd IEEE International Conference on Universal Personal Communications, Ottawa, 560-564.

de Sales, T., de Sousa, J. A., da Silva, A. E., & Rocha, J. S. (2015). Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment. Sixth Argentine Conference on Embedded Systems (CASE). Buenos Aires.

de Souza, R., & Lins, R. (2008). A new propagation model for 2.4 GHz wireless LAN. 14th Asia-Pacific Conference on Communications, (págs. 1-5).

Gao, L., & Lan, D. Y. (2013). Transmission Distance Estimation and Testing for 2.4GHz ZigBee Applications. Fourth International Conference on Emerging Intelligent Data and Web Technologies (EIDWT),. Xian.

IEEE. (s.f.). IEEE 802.15.TG4a.

Kalita, Kumar, H., & Kar, A. (2011). Simulator based performance analysis of Wireless Sensor Network-A new approach. IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

Lara, R. A., Garcés, K., & Lanchimba, R. A. (2016). Modelamiento del canal de propagación con Zigbee para escenarios outdoors. RECI.

Libelium. (s.f.). Waspmote Datasheet. Obtenido de http://www.libelium.com/v11-files/documentation/waspmote/waspmote-datasheet_eng.pdf

Libelium. (s.f.). Waspmote Programing ZigBee. Obtenido de http://www.libelium.com/downloads/documentation/waspmote-zigbee-networking_guide.pdf

Libelium. (s.f.). Waspmote software WaspZB_random. Obtenido de

">https://www.libelium.com/forum/viewtopic.php?p=46053&sid=172be97f14f58e5e9897e484d36ecfec

Manneback, C. (1923). Radiation from transmission lines. Journal of the American Institute of Electrical Engineers, 95-105.

Moschitta, A., Macii, D., Trenti, F., Dalpez, S., & Bozzoli, A. (Mayo 2012). Characterization of a Geometrical Wireless Signal Propagation Model for Indoor Ranging Techniques. Instrumentation and Measurement Technology Conference (I2MTC), 2598-2603.

Pellegrini, R., Persia, S., Volponi, D., & Marcone, G. (2011). RF Propagation Analysis for ZigBee Sensor. 17th Asia-Pacific Conference on Communications (APCC), 339-343.

Rappaport, T. S. (2009). Comunicações sem fio: Princípios e Prácticas. Pearson Prentice Hall.

Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Transactions on Communications.

Schneider, I., Lambrecht , F., & Baier, A. (1996). Enhancement of the Okumura-Hata propagation model using detailed morphological and building data. Seventh IEEE International Symposium on, Taipei,, 34-38.

Sherstyukov, O. N., Latipov, R. R., & Sherstyukov, R. O. (2011). Features of reflection at limiting range of one-hop radiowaves. XXXth URSI General Assembly and Scientific Symposium, (pp. 1-2).

Sujak, B., Ghodgaonkar, D., Mohd, B., & Khatun, S. (2005). Indoor Propagation Channel Models for WLAN 802.1lb at 2.4GHz ISM Band. Asia-Pacific Conference on Applied Electromagnetics.

Tabassum, M., & Zen, K. (2015). Performance evaluation of ZigBee in indoor and outdoor environment. 9th International Conference on Kota Samarahan.

Timoteo, R., Cunha, D., & Cavalcanti, G. (2014). A proposal for path loss prediction in urban environments using support vector regression. The Tenth Advanced International Conference on Telecommunications.

XBee. (s.f.). XBee-PRO® RF Modules. Obtenido de https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

Published

2017-12-06

How to Cite

Lara Cueva, R. A., & Merino Jácome, D. M. (2017). Modelización del canal inalámbrico para enlaces punto a punto empleando tecnología Zigbee en entornos exteriores - On Modeling Wireless Channel for point to point links by using Zigbee technology in Outdoors Scenarios. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 6(1), 151–166. https://doi.org/10.32870/recibe.v6i1.76