Control Robusto de un Doble Péndulo Invertido - Robust control of a Double Inverted Pendulum
DOI:
https://doi.org/10.32870/recibe.v7i1.91Keywords:
Control Robusto, doble péndulo invertido, modelado de sistemas mecánicosAbstract
Este trabajo presenta el diseño de un controlador robusto H∞ para la estabilización de un Doble Péndulo Invertido (DPI). El modelo matemático del DPI es obtenido vía linealización del sistema diseñado en la Toolbox de simulación virtual SimscapeTM MultibodyTM de MathWorks. Se realiza una comparación entre el controlador incluido por defecto en la Toolbox mencionada y el controlador propuesto. La experimentación virtual demuestra que el algoritmo de control robusto H∞ exhibe un mejor desempeño en escenarios donde existen variaciones paramétricas como era de esperarse. En este sentido, la aportación de este trabajo es mostrar la síntesis del controlador y resaltar la importancia de la Toolbox que proporciona un entorno de simulación 3D para múltiples sistemas de ingeniería mecánica y robótica. De igual manera, resulta ser una excelente herramienta didáctica para el aprendizaje de los sistemas de control retroalimentado. Abstract: This paper presents the design of a robust H∞ controller for the stabilization of a Double Inverted Pendulum (DIP). The mathematical model of the DIP is obtained via linearization of the system designed in the virtual simulation toolbox SimscapeTM MultibodyTM of MathWorks. A comparison of the execution is made between the controller included by default in the aforementioned Toolbox and the proposed controller. Virtual experimentation shows that the H∞ robust control algorithm exhibits better performance in scenarios where there are parametric variations as expected. In this sense, the contribution of this work is to show the synthesis of the controller and highlight the importance of the Toolbox that provides a 3D simulation environment for multiple mechanical and robotic engineering systems. In the same way, it turns out to be an excellent didactic tool for the learning of feedback control systems. Keywords: robust control, double inverted pendulum, SimscapeTM MultibodyTM.References
Aoustin, Y. & Formal, A. (2011) Pendubot: combining of energy and intuitive approaches to swing up , stabilization in erected pose. Myltibody Syst. Dyn., 25:
–80.
Bettayeb, M., Boussalem, C., Mansouri, R., & Al-Saggaf, U.M. (2014) Stabilization of an inverted pendulum-cart system by fractional PI-state feedback, ISA Trans.
, 508–516.
Bogdanov, Alexander (2004) Optimal Control of a Double Inverted Pendulum on a Cart. Department of Computer Science and Electrical Engineering, OGI School of Science and Engineering, OHSU, Technical Report CSE 04-006.
Giua, A., Seatzu C., & Usai G. (1999) Observer-controller design for cranes via Lyapunov equivalence. Automatica, vol. 35, no 4, pp. 669-678.
Glück, T., Eder, A., & Kugi, A. (2013) Swing-up control of a triple pendulum on a cart with experimental validation. Automatica. 49, 801–808.
Hyla, Paweł (2012) The crane control systems: A survey. 2012 17th International Conference on Methods and Models in Automation and Robotics (MMAR).
Li-jie, Chen (2011) Research on the nonlinear dynamical behavior of double pendulum. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 1637 - 1640.
Park, M., & Chwa, D. (2009) Swing-Up and Stabilization Control of InvertedPendulum Systems via Coupled Sliding-Mode Control Method. IEEE Trans. Industrial Electronics, Vol. 56, No. 9, 3541–3555.
Patil, M. & Kurode, S. (2017) Stabilization of Rotary Double Inverted Pendulum using Higher Order Sliding Modes. Asian Control conference (ASCC), 1818–1823.
Raj, S. (2016) Reinforcement Learning based Controller for Stabilization of Double Inverted Pendulum. IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2016), 1–5.
Simscape Multibody (2016), The Mathworks Inc., 2016a.
Tomofumi Okada, Kenji Tahara (2014) Development of a two-link planar manipulator with continuously variable transmission mechanism. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
Zhou, K., & Doyle, J.C. (1998) Essentials of Robust Control. Prentice-Hall, Upper Saddle River, NJ, 1998.