Nanoemulsions: Definition, synthesis methods, characterisation and biomedical applications

Authors

  • Abraham Gabriel Alvarado Mendoza Universidad de Guadalajara
  • Valeria Maestría en Ciencias en Química
  • Rosaura Hernández Montelongo Departamento de Bioingeniería Traslacional, CUCEI, Universidad de Guadalajara.
  • Alejandra Cruz Hernández Departamento de Ingeniería Mecánica Eléctrica, CUCEI, Universidad de Guadalajara.

DOI:

https://doi.org/10.32870/recibe.v14i3.441

Keywords:

Nanoemulsions, Biomedical Applications, synthesis methods, High energy methods, Low energy methods

Abstract

Nanoemulsions represent an emerging platform in controlled drug delivery due to their ability to transport and release bioactive compounds, improve their bioavailability, and enable sustained release at the site of action. Their nanometric size and high kinetic stability facilitate penetration into biological tissues and protect therapeutic molecules from enzymatic degradation. In the biomedical field, these nanostructures have shown great potential in the administration of hydrophobic agents and combination therapies. Growing scientific evidence supports their potential to revolutionise pharmaceutical delivery, although key barriers to their widespread clinical application remain. This paper is a brief summary presenting a description of nanoemulsions, the most commonly used synthesis methods and characterisation techniques. Finally, one of their many applications, controlled drug release, is demonstrated.  

Author Biographies

Abraham Gabriel Alvarado Mendoza , Universidad de Guadalajara

Research Professor attached to the Department of Chemistry. Member of the National System of Researchers Level I, Research Line ‘Synthesis, characterisation and modification of polymeric materials’. PRODEP profile. Participates in the postgraduate programme in Materials Science.

Valeria , Maestría en Ciencias en Química

Master's student in Chemistry, working on the development of nanoemulsions for the controlled release of drugs via intranasal administration.

Rosaura Hernández Montelongo , Departamento de Bioingeniería Traslacional, CUCEI, Universidad de Guadalajara.

Research Professor, member of the National System of Researchers, Level I, PRODEP profile. Affiliated with the Department of Translational Bioengineering, CUCEI, University of Guadalajara.

Alejandra Cruz Hernández, Departamento de Ingeniería Mecánica Eléctrica, CUCEI, Universidad de Guadalajara.

Research Professor, member of the National System of Researchers, Level I, PRODEP profile. Affiliated with the Department of Electrical Mechanical Engineering, CUCEI, University of Guadalajara.

References

Abdulla, N. A., Balata, G. F., El-ghamry, H. A., & Gomaa, E. (2021). Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharmaceutical Journal, 29(12), 1466–1485. https://doi.org/10.1016/J.JSPS.2021.11.006

Agrawal, M., Prasad, V. V. S. H., Nijhawan, G., Jalal, S. S., Rajalakshmi, B., & Dwivedi, S. P. (2024). A Comprehensive Review of Electron Microscopy in Materials Science: Technological Advances and Applications. E3S Web of Conferences, 505. https://doi.org/10.1051/E3SCONF/202450501029

Al‐mohammedawi, A., & Mollenhauer, K. (2022a). Current Research and Challenges in Bitumen Emulsion Manufacturing and Its Properties. In Materials (Vol. 15, Issue 6). MDPI. https://doi.org/10.3390/ma15062026

Al‐mohammedawi, A., & Mollenhauer, K. (2022b). Current Research and Challenges in Bitumen Emulsion Manufacturing and Its Properties. Materials 2022, Vol. 15, Page 2026, 15(6), 2026. https://doi.org/10.3390/MA15062026

Azmi, N. A. N., Elgharbawy, A. A. M., Motlagh, S. R., Samsudin, N., & Salleh, H. M. (2019). Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes 2019, Vol. 7, Page 617, 7(9), 617. https://doi.org/10.3390/PR7090617

Bogaert, G. A., Goeman, L., Ridder, D. De, Wevers, M., Ivens, J., & Schuermans, A. (2004). The physical and antimicrobial effects of microwave heating and alcohol immersion on catheters that are reused for clean intermittent catheterisation. European Urology, 46(5), 641–646. https://doi.org/10.1016/J.EURURO.2004.06.016

Busmann, E. F., Martínez, D. G., Lucas, H., & Mäder, K. (2020). Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications. Beilstein Journal of Nanotechnology, 11, 213–224. https://doi.org/10.3762/BJNANO.11.16

Chatzidaki, M. D., & Mitsou, E. (2025a). Advancements in Nanoemulsion-Based Drug Delivery Across Different Administration Routes. In Pharmaceutics (Vol. 17, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pharmaceutics17030337

Chatzidaki, M. D., & Mitsou, E. (2025b). Advancements in Nanoemulsion-Based Drug Delivery Across Different Administration Routes. Pharmaceutics 2025, Vol. 17, Page 337, 17(3), 337. https://doi.org/10.3390/PHARMACEUTICS17030337

Chavhan, R. (2025). Nanosuspensions: Enhancing drug bioavailability through nanonization. Annales Pharmaceutiques Françaises, 83(2), 251–271. https://doi.org/10.1016/J.PHARMA.2024.06.003

Cholakova, D., Vinarov, Z., Tcholakova, S., & Denkov, N. (2022). Self-emulsification in chemical and pharmaceutical technologies. Current Opinion in Colloid and Interface Science, 59. https://doi.org/10.1016/j.cocis.2022.101576

Choradiya, B. R., & Patil, S. B. (2021). A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. Journal of Molecular Liquids, 339, 116751. https://doi.org/10.1016/J.MOLLIQ.2021.116751

Dhaval, M., Vaghela, P., Patel, K., Sojitra, K., Patel, M., Patel, S., Dudhat, K., Shah, S., Manek, R., & Parmar, R. (2022). Lipid-based emulsion drug delivery systems — a comprehensive review. Drug Delivery and Translational Research, 12(7), 1616–1639. https://doi.org/10.1007/S13346-021-01071-9/TABLES/4

Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826–2841. https://doi.org/10.1039/C5SM02958A

Jacob, S., Kather, F. S., Boddu, S. H. S., Shah, J., & Nair, A. B. (2024a). Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024, Vol. 16, Page 1333, 16(10), 1333. https://doi.org/10.3390/PHARMACEUTICS16101333

Jacob, S., Kather, F. S., Boddu, S. H. S., Shah, J., & Nair, A. B. (2024b). Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024, Vol. 16, Page 1333, 16(10), 1333. https://doi.org/10.3390/PHARMACEUTICS16101333

Johnson, D. J., Compton, D. A. C., & Canale, P. L. (1992). Applications of simultaneous DSC/FTIR analysis. Thermochimica Acta, 195(C), 5–20. https://doi.org/10.1016/0040-6031(92)80042-U

KV, K., SR, A., PR, Y., RY, P., & VU, B. (2014). Differential Scanning Calorimetry: A Review. Research & Reviews: Journal Of Pharmaceutical Analysis, 3(3), 11–22. https://www.rroij.com/open-access/differential-scanning-calorimetry-a-review-.php?aid=34700&utm_source=chatgpt.com

Lei, F., Zeng, F., Yu, X., Deng, Y., Zhang, Z., Xu, M., Ding, N., Tian, J., & Li, C. (2023). Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. Journal of Nanobiotechnology, 21(1), 1–19. https://doi.org/10.1186/S12951-023-02045-4/FIGURES/7

Liu, Y., Liang, Y., Yuhong, J., Xin, P., Han, J. L., Zhu, R., Zhang, M., Chen, W., Ma, Y., Du, Y., & Yu, X. (2024). Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Design, Development and Therapy, 18, 1469. https://doi.org/10.2147/DDDT.S447496

More, S. M., Rashid, M. A., Kharwade, R. S., Taha, M., Alhamhoom, Y., Elhassan, G. O., Gangane, P., Asar, T. O., Pise, A., Kaleem, M., & Mujtaba, M. A. (2025). Development of Solid Self-Nanoemulsifying Drug Delivery System of Rhein to Improve Biopharmaceutical Performance: Physiochemical Characterization, and Pharmacokinetic Evaluation. International Journal of Nanomedicine, 20, 267. https://doi.org/10.2147/IJN.S499024

Nakama, Y. (2017). Surfactants. Cosmetic Science and Technology: Theoretical Principles and Applications, 231–244. https://doi.org/10.1016/B978-0-12-802005-0.00015-X

Naseema, A., Kovooru, L., Behera, A. K., Kumar, K. P. P., & Srivastava, P. (2021). A critical review of synthesis procedures, applications and future potential of nanoemulsions. Advances in Colloid and Interface Science, 287, 102318. https://doi.org/10.1016/J.CIS.2020.102318

Pandey, P., Gulati, N., Makhija, M., Purohit, D., & Dureja, H. (2020). Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent Patents on Nanotechnology, 14(4), 276–293. https://doi.org/10.2174/1872210514666200604145755

Preeti, Sambhakar, S., Malik, R., Bhatia, S., Al Harrasi, A., Rani, C., Saharan, R., Kumar, S., Geeta, & Sehrawat, R. (2023a). Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica, 2023. https://doi.org/10.1155/2023/6640103

Preeti, Sambhakar, S., Malik, R., Bhatia, S., Al Harrasi, A., Rani, C., Saharan, R., Kumar, S., Geeta, & Sehrawat, R. (2023b). Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica, 2023(1), 6640103. https://doi.org/10.1155/2023/6640103

Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science, 288, 102344. https://doi.org/10.1016/J.CIS.2020.102344

Rodriguez-Loya, J., Lerma, M., & Gardea-Torresdey, J. L. (2023). Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. Micromachines 2024, Vol. 15, Page 24, 15(1), 24. https://doi.org/10.3390/MI15010024

Singh, M., Bharadwaj, S., Lee, K. E., & Kang, S. G. (2020). Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. Journal of Controlled Release, 328, 895–916. https://doi.org/10.1016/J.JCONREL.2020.10.025

Suri, R., Beg, S., & Kohli, K. (2020). Target strategies for drug delivery bypassing ocular barriers. Journal of Drug Delivery Science and Technology, 55, 101389. https://doi.org/10.1016/J.JDDST.2019.101389

Vitória Minzoni de Souza Iacia, M., Eduarda Ferraz Mendes, M., Cristiny de Oliveira Vieira, K., Cristine Marques Ruiz, G., José Leopoldo Constantino, C., da Silva Martin, C., Eloizo Job, A., Alborghetti Nai, G., & Kretli Winkelstroter Eller, L. (2024). Evaluation of curcumin nanoemulsion effect to prevent intestinal damage. International Journal of Pharmaceutics, 650, 123683. https://doi.org/10.1016/J.IJPHARM.2023.123683

Wilson, R. J., Li, Y., Yang, G., & Zhao, C. X. (2022). Nanoemulsions for drug delivery. Particuology, 64, 85–97. https://doi.org/10.1016/j.partic.2021.05.009

Yablon, D., & Libera, M. (2019). Microscopy 101: Scanning Probes or Scanning Electrons: A Practical Guide to Select a Method for Nanoscale Characterization. Microscopy Today, 27(6), 32–38. https://doi.org/10.1017/S1551929519001044

Zhou, W., Apkarian, R., Wang, Z. L., & Joy, D. (2007). Fundamentals of scanning electron microscopy (SEM). Scanning Microscopy for Nanotechnology: Techniques and Applications, 1–40. https://doi.org/10.1007/978-0-387-39620-0_1

Published

2025-10-08

How to Cite

Alvarado Mendoza, A. G., Sánchez González, V., Hernández Montelongo , R. ., & Cruz Hernández, A. . (2025). Nanoemulsions: Definition, synthesis methods, characterisation and biomedical applications. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 14(3), B1–19. https://doi.org/10.32870/recibe.v14i3.441

Issue

Section

Biomedical Engineering