Hydrogels: Properties, Classification, and Recent Advances.

Authors

  • Abraham Gabriel Alvarado Mendoza Department of Chemistry, CUCEI, University of Guadalajara
  • Samuel Abiud Garnica Duran PhD in Materials Science, CUCEI, University of Guadalajara
  • Ana María Alfaro Ziranda Bachelor's Degree in Chemistry, CUCEI, University of Guadalajara
  • Rosaura Hernández Montelongo Department of Translational Bioengineering, CUCEI, University of Guadalajara.

DOI:

https://doi.org/10.32870/recibe.v14i3.444

Keywords:

Hydrogels, Nanogels, Controlled release, Biomedical applications

Abstract

This mini review presents an overview of hydrogels, polymeric materials that have attracted considerable attention due to their multiple applications, particularly in the biomedical field. It addresses basic definitions, classification, properties, and mechanisms of response to external stimuli such as changes in pH, temperature, pressure, and enzyme sensitivity due to their relevance in drug delivery, regenerative medicine, and emerging therapeutic strategies. Recent advances in biomedical applications and challenges in their clinical application are presented. The multifunctionality and adaptability of these materials highlight their role in the development of new generations of technologies for personalised and precision medicine.  

Author Biographies

Abraham Gabriel Alvarado Mendoza , Department of Chemistry, CUCEI, University of Guadalajara

Professor-Researcher, PRODEP profile, Member of the National System of Researchers Level I Line of Research is the Synthesis, Characterisation and Processing of Polymeric Materials

Samuel Abiud Garnica Duran , PhD in Materials Science, CUCEI, University of Guadalajara

PhD student at the University of Guadalajara

Ana María Alfaro Ziranda , Bachelor's Degree in Chemistry, CUCEI, University of Guadalajara

Bachelor's Degree Student in Chemistry, CUCEI, University of Guadalajara

Rosaura Hernández Montelongo , Department of Translational Bioengineering, CUCEI, University of Guadalajara.

PRODEP researcher, member of the National System of Researchers, Level I

References

Jiang, Y., Li, H., Wang, X., & Wang, Y. (2023). A review of the development of biopolymer hydrogel-based systems for biomedical applications. Gels, 11(3), 178. https://doi.org/10.3390/gels11030178

Nugroho, F. A. A., Rizky, F. S. A., Gozan, M., & Budiman, A. (2022). Novel trends in hydrogel development for biomedical applications. Polymers, 14(15), 3023. https://doi.org/10.3390/polym14153023

Fan, L., Yang, J., Wu, H., Hu, Z., Yi, J., & Tong, C. (2022). Hydrogels: Properties and applications in biomedicine. Molecules, 27(9), 2902. https://doi.org/10.3390/molecules27092902

Owens, D. E., Jian, Y., Fang, J. E., Slaughter, B. V., Chen, Y. H., & Peppas, N. A. (2007). Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules, 40(20), 7306-7310.

Ho, T. C., Pelton, R., & Huson, M. G. (2022). Hydrogels: Properties and Applications in Biomedicine. Molecules, 27(9), 2902. https://doi.org/10.3390/molecules27092902

Zhang, Z., Liu, Y., Wang, Y., & Liu, Y. (2018). Influence of Network Structure on the Crystallization Behavior of PEG-Based Hydrogels. Polymers, 10(9), 970. https://doi.org/10.3390/polym10090970

Hou, Y., Huang, Y., Ma, Y., Shuai, X., Shen, J., & Yang, W. (2022). Construction and Ion Transport-Related Applications of the Hydrogels. Polymers, 14(19), 4037. https://doi.org/10.3390/polymers14194037

Gori, M., Donnadio, A., Iacopetti, P., Basoli, F., Zuppolini, S., & Lamberti, A. (2022). A soft zwitterionic hydrogel as potential coating on implantable neuroprostheses. Molecules, 27(10), 3126. https://doi.org/10.3390/molecules27103126

Xie, M., Liu, Q., Liu, X., Li, C., Zhang, Q., & Zhang, Q. (2024). Hydrogel composites for multifunctional biomedical applications. Materials, 8(4), 154. https://doi.org/10.3390/ma8040154

Omidian, H., Chowdhury, S. D., & Wilson, R. L. (2024). Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels, 10(4), 238. https://doi.org/10.3390/gels10040238

Giordano, S., Terracciano, M., Gallo, E., Diaferia, C., Falanga, A. P., Accardo, A., Franzese, M., Salvatore, M., Piccialli, G., Borbone, N., & Oliviero, G. (2025). Investigating the interactions of peptide nucleic acids with multicomponent peptide hydrogels for the advancement of healthcare technologies. Gels, 11(5), 367. https://doi.org/10.3390/gels11050367

Dell, A. C., Wagner, G., Own, J., & Geibel, J. P. (2022). 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics, 14(12), 2596. https://doi.org/10.3390/pharmaceutics14122596

Mohan, A., Santhamoorthy, M., Phan, T. T. V., & Kim, S.-C. (2024). NIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery. Gels, 10(2), 184. https://doi.org/10.3390/gels10020184

Rafael, D., Melendres, M. M. R., Andrade, F., Montero, S., Martinez-Trucharte, F., Vilar-Hernandez, M., Durán-Lara, E.F., Schwartz Jr, S., & Abasolo, I. (2021). Thermo-Responsive Hydrogels for Cancer Local Therapy: Challenges and State-of-Art. Int. J. Pharm., 606, 120954. https://doi.org/10.1016/j.ijpharm.2021.120954

Sipos, B., Budai-Szűcs, M., Katona, G., & Csóka, I. (2025). Gellan Gum-Based In Situ Hydrogels for Nasal Delivery of Polymeric Micelles Loaded with Risperidone. Gels, 11(6), 404. https://doi.org/10.3390/gels11060404

Varughese, A., Sekhar, S. S., & Radhakrishnan, E. K. (2025). Development and Characterization of Chitosan-Based In Situ Gelling Systems for Periodontal Drug Delivery. Gels, 11(3), 281. https://doi.org/10.3390/gels11030281

Encinas-Basurto, D., Ruiz, V. H., Schnellmann, R. G., & Mansour, H. M. (2025). Evaluation of Carboxymethyl Chitosan–Genipin Hydrogels as Reservoir Systems for Suramin Delivery in Epithelial Tissues. Gels, 11(5), 312. https://doi.org/10.3390/gels11050312

Rhinow, R., Franco, M. K. K. D., Vollrath, M. K., Kellermann, G., & Yokaichiya, F. (2025). Poloxamer-Driven Drug Delivery System for Anti-Inflammatory Drugs Using Small-Angle Neutron Scattering Approach. Gels, 11(6), 410. https://doi.org/10.3390/gels11060410

Plugariu, D.-V., Zgura, I., Mihaila, I., Bucur, B., Iovu, H., & Vasile, B. S. (2025). Injectable thermo-sensitive hydrogel based on graphene oxide functionalized with hyaluronic acid for local release of ketorolac tromethamine. Pharmaceutics, 17(2), 360. https://doi.org/10.3390/pharmaceutics17020360.

Esparza-Villalpando, V., Pozos-Guillén, A., Vértiz-Hernández, Á. A., Vega-Baudrit, J., & Chavarría-Bolaños, D. (2025). Design of a dual-drug delivery system for local release of chlorhexidine and dexketoprofen. Polymers, 17(13), 1771. https://doi.org/10.3390/polym17131771.

Viezuina, D.-M., Musa, I., Aldea, M., Matache, I.-M., Rotaru Zavaleanu, A.-D., Gresita, A., Veronica, S., & Mitran, S. I. (2025). Gelatin-based hydrogels for peripheral nerve regeneration: A multifunctional vehicle for cellular, molecular, and pharmacological therapy. Gels, 11(7), 490. https://doi.org/10.3390/gels11070490.

Radojković, N., Spasojević, J., Vukoje, I., Kačarević-Popović, Z., Stamenović, U., Vodnik, V., Roglić, G., & Radosavljević, A. (2025). Gamma irradiation-induced synthesis of nano Au-PNiPAAm/PVA bi-layered photo-thermo-responsive hydrogel actuators with a switchable bending motion. Polymers, 17(13), 1774. https://doi.org/10.3390/polym17131774

Kawaguchi, H. (2020). On going to a new era of microgel exhibiting volume phase transition. Gels, 6(3), 26. https://doi.org/10.3390/gels6030026

Stolic, A., Rogic Miladinovic, Z., Krstic, M., Stamboliev, G., Petrovic, V., & Suljovrujic, E. (2025). Radiation-induced synthesis of polymer networks based on thermoresponsive ethylene glycol propylene glycol monomers. Gels, 11(7), 488. https://doi.org/10.3390/gels11070488

Dušek, K., & Dušková-Smržová, M. (2020). Volume phase transition in gels: Its discovery and development. Gels, 6(3), 22. https://doi.org/10.3390/gels6030022

Zuckerman, S. T., Rivera-Delgado, E., Haley, R. M., Korley, J. N., & von Recum, H. A. (2020). Elucidating the structure-function relationship of solvent and cross-linker on affinity-based release from cyclodextrin hydrogels. Gels, 6(1), 9. https://doi.org/10.3390/gels6010009

Costa, M. C. M., Silva, S. M. C., Almeida, L. C., & Antunes, F. E. (2025). Injectable and printable thermoresponsive hydrogel composites reinforced with nanoclays for biomedical applications. Gels, 11(4), 312. https://doi.org/10.3390/gels11040312.

Chaji, S., Al-Saleh, J., & Gomillion, C. T. (2020). Bioprinted three-dimensional cell-laden hydrogels to evaluate adipocyte–breast cancer cell interactions. Gels, 6(1), 10. https://doi.org/10.3390/gels6010010

Pinelli, F., Perale, G., & Rossi, F. (2020). Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 6(1), 6. https://doi.org/10.3390/gels6010006

Pawlik, A., Malina, D., Strzelecka, M., & Tomczykowa, M. (2025). Thermoresponsive hydrogels based on poly(N-isopropylacrylamide) for controlled drug delivery systems. Gels, 11(1), 45. https://doi.org/10.3390/gels11010045.

Li, Y., Wang, J., & Liu, S. (2025). Synthesis of Temperature/pH Dual-Responsive Double-Crosslinked Hydrogel on Medical Titanium Alloy Surface. Gels, 11(6), 443. https://doi.org/10.3390/gels11060443.

Zhi, Y., Zhang, Q., & Cao, J. (2025). pH-Responsive Injectable Hydrogels for Localized Cancer Therapy: Strategies and Applications. Gels, 11(5), 370. https://doi.org/10.3390/gels11050370

Piszko, P. J., Kulus, M., Piszko, A., Kiryk, J., Kiryk, S., Kensy, J., Małyszek, A., Michalak, M., Do brzyński, W., Matys, J., & Dobrzyński, M. (2025). The Influence of Calcium Ions and pH on Fluoride Release from Commercial Fluoride Gels in an In Vitro Study. Gels, 11(7), 486. https://doi.org/10.3390/gels11070486

Anantaworasakul, P., Preedalikit, W., Anantaworasakul, P., Singh, S., Intharuksa, A., Arunotayanun, W., Na Takuathung, M., Yotsawimonwat, S., & Chittasupho, C. (2025). Phytochemical Characterization, Bioactivities, and Nanoparticle-Based Topical Gel Formulation Development from Four Mitragyna speciosa Varieties. Gels, 11(7), 494. https://doi.org/10.3390/gels11070494

Sobczak, M. (2022). Enzyme-responsive hydrogels as potential drug delivery systems—State of knowledge and future prospects. Int. J. Mol. Sci., 23(8), 4421. https://doi.org/10.3390/ijms23084421

Khodeir, M., Jia, H., Vlad, A., & Gohy, J.-F. (2021). Application of redox-responsive hydrogels based on 2,2,6,6-tetramethyl-1-piperidinyloxy methacrylate and oligo(ethyleneglycol) methacrylate in controlled release and catalysis. Polymers, 13(8), 1307. https://doi.org/10.3390/polym13081307

Song, W., You, J., Zhang, Y., Yang, Q., Jiao, J., & Zhang, H. (2022). Recent studies on hydrogels based on H₂O₂-responsive moieties: Mechanism, preparation and application. Gels, 8(6), 361. https://doi.org/10.3390/gels8060361

Psarrou, M., Mitraki, A., Vamvakaki, M., & Kokotidou, C. (2023). Stimuli-responsive polysaccharide hydrogels and their composites for wound healing applications. Polymers, 15(4), 986. https://doi.org/10.3390/polym15040986

Published

2026-01-30

How to Cite

Alvarado Mendoza, A. G., Garnica Duran , S. A. ., Alfaro Ziranda , A. M. ., & Hernández Montelongo , R. . (2026). Hydrogels: Properties, Classification, and Recent Advances. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 14(3), B3–17. https://doi.org/10.32870/recibe.v14i3.444

Issue

Section

Biomedical Engineering