Biomedical Entity Recognition Using a Small Language Model

Authors

  • Amed Clavería Méndez Universidad de Guadalajara
  • Israel Roman Godínez University of Guadalajara
  • Sulema Torres Ramos University of Guadalajara
  • Stewart Rene Santos Arce University of Guadalajara

DOI:

https://doi.org/10.32870/recibe.v14i3.448

Keywords:

Small Language Model, Selective State Space Models, Biomedical Named Entity Recognition

Abstract

This research proposes developing a computationally efficient Small Language Model (SLM) for Biomedical Named Entity Recognition (NER). By fine-tuning a general-domain pretrained SLM (based on selective state space models, SSMs) on specialized biomedical texts, we aim to achieve performance comparable to larger models. Our approach addresses limitations of Transformer-based models like BioBERT (110M+ parameters) by combining linear-time sequence processing with biomedical domain adaptation techniques.

References

Brown et al., (2020). Language Models are Few-Shot Learners (No. arXiv:2005.14165). arXiv. https://doi.org/10.48550/arXiv.2005.14165

Gu, A., & Dao, T. (2024). Mamba: Linear-Time Sequence Modeling with Selective State Spaces (No. arXiv:2312.00752). arXiv. https://doi.org/10.48550/arXiv.2312.00752

Huang et al., (2020). ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission (No. arXiv:1904.05342). arXiv. https://doi.org/10.48550/arXiv.1904.05342

Lee et al., (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682

Marengo et al., (2024). Benchmarking LLMs and SLMs for patient reported outcomes. https://doi.org/10.48550/ARXIV.2412.16291

Yoshimura et al., (2024). MambaPEFT: Exploring Parameter-Efficient Fine-Tuning for Mamba (No. arXiv:2411.03855). arXiv. https://doi.org/10.48550/arXiv.2411.03855

Downloads

Published

2026-01-13

How to Cite

Clavería Méndez, A., Roman Godínez, I., Torres Ramos, S., & Santos Arce, S. R. (2026). Biomedical Entity Recognition Using a Small Language Model. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 14(3), LA_4–4. https://doi.org/10.32870/recibe.v14i3.448