El Detección de ELA utilizando Análisis Frecuencial con Aprendizaje Automático

Authors

  • Alejandro Diaz Montes de Oca Universidad de Guadalajara
  • Ricardo Antonio Salido Ruíz Universidad de Guadalajara
  • Stewart René Santos Arce Universidad de Guadalajara

DOI:

https://doi.org/10.32870/recibe.v14i3.451

Keywords:

Amyotrophic Lateral Sclerosis, Machine Learning, Frequency Analysis

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative condition that deteriorates motor neurons, leading to muscle weakness and impairments in voluntary control of movement, speech, and facial expressions. Current diagnostic methods, based on clinical evaluations and specialized tests present significant delays, affecting patient survival and quality of life. This study proposes a non-invasive method to detect ALS by characterizing facial markers in the frequency domain through machine learning algorithms.

References

- Richards, D., Morren, J. A., & Pioro, E. P. (2020). Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis.

- Bandini, A., Green, J. R., Taati, B., Orlandi, S., Zinman, L., & Yunusova, Y. (2018). Automatic Detection of Amyotrophic Lateral Sclerosis (ALS) from Video-Based Analysis of Facial Movements: Speech and Non-Speech Tasks. 2018

- Gomes, N., Yoshida, A., Roder, M., Camargo De Oliveira, G., & Papa, J. (2024). Facial Point Graphs for Amyotrophic Lateral Sclerosis Identification

- Bandini, A., Rezaei, S., Guarin, D. L., Kulkarni, M., Lim, D., Boulos, M. I., Zinman, L., Yunusova, Y., & Taati, B. (2021). A New Dataset for Facial Motion Analysis in Individuals With Neurological Disorders

Published

2026-01-13

How to Cite

Diaz Montes de Oca, A., Salido Ruíz, R. A., & Santos Arce, S. R. (2026). El Detección de ELA utilizando Análisis Frecuencial con Aprendizaje Automático. ReCIBE, Electronic Journal of Computing, Informatics, Biomedical and Electronics, 14(3), LA_2–4. https://doi.org/10.32870/recibe.v14i3.451